tf.contrib.distributions.MultivariateNormalCholesky.entropy()

tf.contrib.distributions.MultivariateNormalCholesky.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.distributions.Bernoulli.pmf()

tf.contrib.distributions.Bernoulli.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.dtype

tf.contrib.learn.extract_dask_labels()

tf.contrib.learn.extract_dask_labels(labels) Extract data from dask.Series for labels.

tf.contrib.distributions.Uniform.is_reparameterized

tf.contrib.distributions.Uniform.is_reparameterized

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_batch_shape()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor

class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor MultivariateNormalFullTensor is a StochasticTensor backed by the distribution MultivariateNormalFull.

tf.exp()

tf.exp(x, name=None) Computes exponential of x element-wise. \(y = e^x\). Args: x: A Tensor. Must be one of the following types: half, float32, float64, complex64, complex128. name: A name for the operation (optional). Returns: A Tensor. Has the same type as x.

tf.FixedLenSequenceFeature.shape

tf.FixedLenSequenceFeature.shape Alias for field number 0

tensorflow::PartialTensorShape::AsTensorShape()

bool tensorflow::PartialTensorShape::AsTensorShape(TensorShape *tensor_shape) const