tensorflow::Tensor::dims()

int tensorflow::Tensor::dims() const Convenience accessor for the tensor shape. For all shape accessors, see comments for relevant methods of TensorShape in tensor_shape.h.

tf.contrib.distributions.Chi2.param_static_shapes()

tf.contrib.distributions.Chi2.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.batch_shape()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalFull.cdf()

tf.contrib.distributions.MultivariateNormalFull.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Poisson.entropy()

tf.contrib.distributions.Poisson.entropy(name='entropy') Shanon entropy in nats.

tf.FixedLenFeature.shape

tf.FixedLenFeature.shape Alias for field number 0

tf.contrib.distributions.BernoulliWithSigmoidP.param_shapes()

tf.contrib.distributions.BernoulliWithSigmoidP.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalCholesky.cdf()

tf.contrib.distributions.MultivariateNormalCholesky.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.bayesflow.stochastic_tensor.MeanValue.__init__()

tf.contrib.bayesflow.stochastic_tensor.MeanValue.__init__(stop_gradient=False)

tf.contrib.rnn.LayerNormBasicLSTMCell.output_size

tf.contrib.rnn.LayerNormBasicLSTMCell.output_size