tf.contrib.bayesflow.stochastic_tensor.NormalTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.distribution

tensorflow::EnvWrapper::RegisterFileSystem()

Status tensorflow::EnvWrapper::RegisterFileSystem(const string &scheme, FileSystemRegistry::Factory factory) override

tf.contrib.distributions.StudentT.log_prob()

tf.contrib.distributions.StudentT.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tensorflow::TensorShape::DebugString()

string tensorflow::TensorShape::DebugString() const For error messages.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value(name='value')

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.entropy(name='entropy')

tf.TFRecordReader.serialize_state()

tf.TFRecordReader.serialize_state(name=None) Produce a string tensor that encodes the state of a reader. Not all Readers support being serialized, so this can produce an Unimplemented error. Args: name: A name for the operation (optional). Returns: A string Tensor.

tf.contrib.distributions.Mixture.log_cdf()

tf.contrib.distributions.Mixture.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_shape(x) + self.

tf.contrib.distributions.Chi2.log_prob()

tf.contrib.distributions.Chi2.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Chi2.log_survival_function()

tf.contrib.distributions.Chi2.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or double Tensor