tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value(name='value')

tf.nn.rnn_cell.DropoutWrapper.output_size

tf.nn.rnn_cell.DropoutWrapper.output_size

tf.contrib.distributions.NormalWithSoftplusSigma.entropy()

tf.contrib.distributions.NormalWithSoftplusSigma.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.clone(name=None, **dist_args)

tf.contrib.rnn.AttentionCellWrapper.state_size

tf.contrib.rnn.AttentionCellWrapper.state_size

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.value()

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.value(name='value')

tf.contrib.distributions.Laplace.get_batch_shape()

tf.contrib.distributions.Laplace.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.FixedLenSequenceFeature.__repr__()

tf.FixedLenSequenceFeature.__repr__() Return a nicely formatted representation string

tf.nn.rnn_cell.OutputProjectionWrapper

class tf.nn.rnn_cell.OutputProjectionWrapper Operator adding an output projection to the given cell. Note: in many cases it may be more efficient to not use this wrapper, but instead concatenate the whole sequence of your outputs in time, do the projection on this batch-concatenated sequence, then split it if needed or directly feed into a softmax.

tensorflow::EnvWrapper::RegisterFileSystem()

Status tensorflow::EnvWrapper::RegisterFileSystem(const string &scheme, FileSystemRegistry::Factory factory) override