tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.entropy(name='entropy')

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value(name='value')

tensorflow::TensorShape::DebugString()

string tensorflow::TensorShape::DebugString() const For error messages.

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.mean(name='mean')

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict

tf.contrib.distributions.Categorical.allow_nan_stats

tf.contrib.distributions.Categorical.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value(name='value')

tf.nn.rnn_cell.DropoutWrapper.output_size

tf.nn.rnn_cell.DropoutWrapper.output_size

tf.contrib.distributions.NormalWithSoftplusSigma.entropy()

tf.contrib.distributions.NormalWithSoftplusSigma.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.clone(name=None, **dist_args)