tf.contrib.distributions.Mixture.sample()

tf.contrib.distributions.Mixture.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Laplace.loc

tf.contrib.distributions.Laplace.loc Distribution parameter for the location.

tf.contrib.distributions.Laplace.pdf()

tf.contrib.distributions.Laplace.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.metrics.set_union()

tf.contrib.metrics.set_union(a, b, validate_indices=True) Compute set union of elements in last dimension of a and b. All but the last dimension of a and b must match. Args: a: Tensor or SparseTensor of the same type as b. If sparse, indices must be sorted in row-major order. b: Tensor or SparseTensor of the same type as a. Must be SparseTensor if a is SparseTensor. If sparse, indices must be sorted in row-major order. validate_indices: Whether to validate the order and range of sparse indi

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.input_dict

tf.contrib.training.NextQueuedSequenceBatch.insertion_index

tf.contrib.training.NextQueuedSequenceBatch.insertion_index The insertion indices of the examples (when they were first added). These indices start with the value -2**63 and increase with every call to the prefetch op. Each whole example gets its own insertion index, and this is used to prioritize the example so that its truncated segments appear in adjacent iterations, even if new examples are inserted by the prefetch op between iterations. Returns: An int64 vector of length batch_size, the i

tf.contrib.learn.monitors.NanLoss.set_estimator()

tf.contrib.learn.monitors.NanLoss.set_estimator(estimator) A setter called automatically by the target estimator. If the estimator is locked, this method does nothing. Args: estimator: the estimator that this monitor monitors. Raises: ValueError: if the estimator is None.

tensorflow::Env::RenameFile()

Status tensorflow::Env::RenameFile(const string &src, const string &target) Renames file src to target. If target already exists, it will be replaced.

tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin()

tf.contrib.learn.monitors.CaptureVariable.run_on_all_workers

tf.contrib.learn.monitors.CaptureVariable.run_on_all_workers