tf.contrib.learn.monitors.NanLoss.set_estimator()

tf.contrib.learn.monitors.NanLoss.set_estimator(estimator) A setter called automatically by the target estimator. If the estimator is locked, this method does nothing. Args: estimator: the estimator that this monitor monitors. Raises: ValueError: if the estimator is None.

tensorflow::Env::RenameFile()

Status tensorflow::Env::RenameFile(const string &src, const string &target) Renames file src to target. If target already exists, it will be replaced.

tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin()

tf.contrib.learn.monitors.CaptureVariable.run_on_all_workers

tf.contrib.learn.monitors.CaptureVariable.run_on_all_workers

tf.contrib.learn.monitors.NanLoss.step_begin()

tf.contrib.learn.monitors.NanLoss.step_begin(step) Overrides BaseMonitor.step_begin. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. Returns: A list, the result of every_n_step_begin, if that was called this step, or an empty list otherwise. Raises: ValueError: if called more than once during a step.

tf.contrib.distributions.Poisson.log_prob()

tf.contrib.distributions.Poisson.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Additional documentation from Poisson: Note thet the input value must be a non-negative floating point tensor with dtype dtype and whose shape can be broadcast with self.lam. x is only legal if it is non-negative and its components are equal to integer values. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor o

tf.contrib.learn.monitors.SummarySaver.set_estimator()

tf.contrib.learn.monitors.SummarySaver.set_estimator(estimator)

tf.contrib.distributions.Poisson.pmf()

tf.contrib.distributions.Poisson.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.QuantizedDistribution.event_shape()

tf.contrib.distributions.QuantizedDistribution.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.nn.rnn_cell.RNNCell.state_size

tf.nn.rnn_cell.RNNCell.state_size size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes.