tf.igammac()

tf.igammac(a, x, name=None) Compute the upper regularized incomplete Gamma function Q(a, x). The upper regularized incomplete Gamma function is defined as: Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x) where Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt is the upper incomplete Gama function. Note, above P(a, x) (Igamma) is the lower regularized complete Gamma function. Args: a: A Tensor. Must be one of the following types: float32, float64. x: A Tensor. Must have the same type as a. n

tf.contrib.distributions.BetaWithSoftplusAB.mean()

tf.contrib.distributions.BetaWithSoftplusAB.mean(name='mean') Mean.

tf.OpError.op

tf.OpError.op The operation that failed, if known. N.B. If the failed op was synthesized at runtime, e.g. a Send or Recv op, there will be no corresponding Operation object. In that case, this will return None, and you should instead use the OpError.node_def to discover information about the op. Returns: The Operation that failed, or None.

tf.mod()

tf.mod(x, y, name=None) Returns element-wise remainder of division. NOTE: Mod supports broadcasting. More about broadcasting here Args: x: A Tensor. Must be one of the following types: int32, int64, float32, float64. y: A Tensor. Must have the same type as x. name: A name for the operation (optional). Returns: A Tensor. Has the same type as x.

tf.errors.NotFoundError.__init__()

tf.errors.NotFoundError.__init__(node_def, op, message) Creates a NotFoundError.

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.clone(name=None, **dist_args)

tf.contrib.distributions.Binomial.pmf()

tf.contrib.distributions.Binomial.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalCholesky.is_reparameterized

tf.contrib.distributions.MultivariateNormalCholesky.is_reparameterized

tf.contrib.distributions.Binomial.cdf()

tf.contrib.distributions.Binomial.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tensorflow::Tensor::TotalBytes()

size_t tensorflow::Tensor::TotalBytes() const Returns the estimated memory usage of this tensor.