tf.contrib.bayesflow.stochastic_tensor.SampleValue.stop_gradient

tf.contrib.bayesflow.stochastic_tensor.SampleValue.stop_gradient

tf.contrib.learn.LinearRegressor.export()

tf.contrib.learn.LinearRegressor.export(*args, **kwargs) Exports inference graph into given dir. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23. Instructions for updating: The signature of the input_fn accepted by export is changing to be consistent with what's used by tf.Learn Estimator's train/evaluate. input_fn (and in most cases, input_feature_key) will become required args, and use_deprecated_input_fn will default to False and be removed altoge

tf.is_numeric_tensor()

tf.is_numeric_tensor(tensor)

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sigma_det()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sigma_det(name='sigma_det') Determinant of covariance matrix.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.survival_function()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_survival_function()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: val

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_cdf()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_pmf()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.Multinomial.mode()

tf.contrib.distributions.Multinomial.mode(name='mode') Mode.

tf.contrib.distributions.Laplace.log_prob()

tf.contrib.distributions.Laplace.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.