sklearn.datasets.make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None) [source]
Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a 2 * class_sep-sided hypercube, and assigns an equal number of clusters to each cla