d3.geoInterruptedMollweideHemispheres()

d3.geoInterruptedMollweideHemispheres() The Mollweide projection interrupted into two (equal-area) hemispheres.

d3.geoInterruptedMollweide()

d3.geoInterruptedMollweide() Goode’s interrupted Mollweide projection.

d3.geoInterruptedHomolosine()

d3.geoInterruptedHomolosine() Goode’s interrupted homolosine projection.

d3.geoInterruptedBoggs()

d3.geoInterruptedBoggs() Bogg’s interrupted eumorphic projection.

d3.geoInterrupt()

d3.geoInterrupt(project, lobes) Defines a new interrupted projection for the specified raw projection function project and the specified array of lobes. The array lobes contains two elements representing the hemilobes for the northern hemisphere and the southern hemisphere, respectively. Each hemilobe is an array of triangles, with each triangle represented as three points (in degrees): the start, midpoint, and end. For example, the lobes in Goode’s interrupted homolosine projection are defin

d3.geoInterpolate()

d3.geoInterpolate(a, b) Returns an interpolator function given two points a and b. Each point must be specified as a two-element array [longitude, latitude] in degrees. The returned interpolator function takes a single argument t, where t is a number ranging from 0 to 1; a value of 0 returns the point a, while a value of 1 returns the point b. Intermediate values interpolate from a to b along the great arc that passes through both a and b. If a and b are antipodes, an arbitrary great arc is c

d3.geoIdentity()

d3.geoIdentity() The identity transform can be used to scale, translate and clip planar geometry. It implements projection.scale, projection.translate, projection.fitExtent, projection.fitSize and projection.clipExtent.

d3.geoHomolosineRaw

d3.geoHomolosine() d3.geoHomolosineRaw The pseudocylindrical, equal-area Goode homolosine projection is normally presented in interrupted form.

d3.geoHill()

d3.geoHill() d3.geoHillRaw(K) Hill eucyclic projection is psuedoconic and equal-area.

d3.geoHealpix()

d3.geoHealpix() d3.geoHealpixRaw(lobes) The HEALPix projection: a Hierarchical Equal Area isoLatitude Pixelisation of a 2-sphere. In this implementation, the parameter K is fixed at 3. Note: requires clipping to the sphere.