iolib.table.csv2st()

statsmodels.iolib.table.csv2st statsmodels.iolib.table.csv2st(csvfile, headers=False, stubs=False, title=None) [source] Return SimpleTable instance, created from the data in csvfile, which is in comma separated values format. The first row may contain headers: set headers=True. The first column may contain stubs: set stubs=True. Can also supply headers and stubs as tuples of strings.

Nested.covariance_matrix()

statsmodels.genmod.cov_struct.Nested.covariance_matrix Nested.covariance_matrix(expval, index) [source] Returns the working covariance or correlation matrix for a given cluster of data. Parameters: endog_expval: array-like : The expected values of endog for the cluster for which the covariance or correlation matrix will be returned index: integer : The index of the cluster for which the covariane or correlation matrix will be returned Returns: M: matrix : The covariance or correlatio

Nested.update()

statsmodels.genmod.cov_struct.Nested.update Nested.update(params) [source] Updates the association parameter values based on the current regression coefficients. Parameters: params : array-like Working values for the regression parameters.

OLS.score()

statsmodels.regression.linear_model.OLS.score OLS.score(params) Score vector of model. The gradient of logL with respect to each parameter.

DiscreteResults.save()

statsmodels.discrete.discrete_model.DiscreteResults.save DiscreteResults.save(fname, remove_data=False) save a pickle of this instance Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. remove_data : bool If False (default), then the instance is pickled without changes. If True, then all arrays with length nobs are set to None before pickling. See the remove_data method. In some cases not all arrays will be set to None. Notes If

VARProcess.forecast_cov()

statsmodels.tsa.vector_ar.var_model.VARProcess.forecast_cov VARProcess.forecast_cov(steps) Compute theoretical forecast error variance matrices Parameters: steps : int Number of steps ahead Returns: forc_covs : ndarray (steps x neqs x neqs) Notes

Transf_gen.cdf()

statsmodels.sandbox.distributions.transformed.Transf_gen.cdf Transf_gen.cdf(x, *args, **kwds) Cumulative distribution function of the given RV. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: cdf : ndarray Cumulative distribution fun

NormExpan_gen.expect()

statsmodels.sandbox.distributions.extras.NormExpan_gen.expect NormExpan_gen.expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Calculate expected value of a function with respect to the distribution. The expected value of a function f(x) with respect to a distribution dist is defined as: ubound E[x] = Integral(f(x) * dist.pdf(x)) lbound Parameters: func : callable, optional Function for which integral is calculated. Takes only one argum

static IVGMMResults.resid()

statsmodels.sandbox.regression.gmm.IVGMMResults.resid static IVGMMResults.resid() [source]

IVGMMResults.summary()

statsmodels.sandbox.regression.gmm.IVGMMResults.summary IVGMMResults.summary(yname=None, xname=None, title=None, alpha=0.05) Summarize the Regression Results Parameters: yname : string, optional Default is y xname : list of strings, optional Default is var_## for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns: smry : Summary in