static QuantRegResults.HC1_se()

statsmodels.regression.quantile_regression.QuantRegResults.HC1_se static QuantRegResults.HC1_se() [source]

probit.inverse()

statsmodels.genmod.families.links.probit.inverse probit.inverse(z) The inverse of the CDF link Parameters: z : array-like The value of the inverse of the link function at p Returns: p : array Mean probabilities. The value of the inverse of CDF link of z Notes g^(-1)(z) = dbn.cdf(z)

MNLogit.loglike_and_score()

statsmodels.discrete.discrete_model.MNLogit.loglike_and_score MNLogit.loglike_and_score(params) [source] Returns log likelihood and score, efficiently reusing calculations. Note that both of these returned quantities will need to be negated before being minimized by the maximum likelihood fitting machinery.

static MultinomialResults.pvalues()

statsmodels.discrete.discrete_model.MultinomialResults.pvalues static MultinomialResults.pvalues()

PoissonGMLE.predict_distribution()

statsmodels.miscmodels.count.PoissonGMLE.predict_distribution PoissonGMLE.predict_distribution(exog) [source] return frozen scipy.stats distribution with mu at estimated prediction

static ARMAResults.maroots()

statsmodels.tsa.arima_model.ARMAResults.maroots static ARMAResults.maroots() [source]

VARResults.summary()

statsmodels.tsa.vector_ar.var_model.VARResults.summary VARResults.summary() [source] Compute console output summary of estimates Returns: summary : VARSummary

static MixedLMResults.llf()

statsmodels.regression.mixed_linear_model.MixedLMResults.llf static MixedLMResults.llf()

static LogitResults.llr()

statsmodels.discrete.discrete_model.LogitResults.llr static LogitResults.llr()

NegativeBinomial.cdf()

statsmodels.discrete.discrete_model.NegativeBinomial.cdf NegativeBinomial.cdf(X) The cumulative distribution function of the model.