tools.tools.recipr()

statsmodels.tools.tools.recipr statsmodels.tools.tools.recipr(X) [source] Return the reciprocal of an array, setting all entries less than or equal to 0 to 0. Therefore, it presumes that X should be positive in general.

PoissonOffsetGMLE.score_obs()

statsmodels.miscmodels.count.PoissonOffsetGMLE.score_obs PoissonOffsetGMLE.score_obs(params, **kwds) Jacobian/Gradient of log-likelihood evaluated at params for each observation.

LogitResults.f_test()

statsmodels.discrete.discrete_model.LogitResults.f_test LogitResults.f_test(r_matrix, cov_p=None, scale=1.0, invcov=None) Compute the F-test for a joint linear hypothesis. This is a special case of wald_test that always uses the F distribution. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test ca

Nonparametric Methods nonparametric

Nonparametric Methods nonparametric This section collects various methods in nonparametric statistics. This includes kernel density estimation for univariate and multivariate data, kernel regression and locally weighted scatterplot smoothing (lowess). sandbox.nonparametric contains additional functions that are work in progress or don?t have unit tests yet. We are planning to include here nonparametric density estimators, especially based on kernel or orthogonal polynomials, smoothers, and tool

RegressionResults.f_test()

statsmodels.regression.linear_model.RegressionResults.f_test RegressionResults.f_test(r_matrix, cov_p=None, scale=1.0, invcov=None) Compute the F-test for a joint linear hypothesis. This is a special case of wald_test that always uses the F distribution. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses

IVGMMResults.wald_test()

statsmodels.sandbox.regression.gmm.IVGMMResults.wald_test IVGMMResults.wald_test(r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None) Compute a Wald-test for a joint linear hypothesis. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tup

regression.linear_model.GLSAR()

statsmodels.regression.linear_model.GLSAR class statsmodels.regression.linear_model.GLSAR(endog, exog=None, rho=1, missing='none', **kwargs) [source] A regression model with an AR(p) covariance structure. Parameters: endog : array-like 1-d endogenous response variable. The dependent variable. exog : array-like A nobs x k array where nobs is the number of observations and k is the number of regressors. An intercept is not included by default and should be added by the user. See statsmodel

graphics.functional.fboxplot()

statsmodels.graphics.functional.fboxplot statsmodels.graphics.functional.fboxplot(data, xdata=None, labels=None, depth=None, method='MBD', wfactor=1.5, ax=None, plot_opts={}) [source] Plot functional boxplot. A functional boxplot is the analog of a boxplot for functional data. Functional data is any type of data that varies over a continuum, i.e. curves, probabillity distributions, seasonal data, etc. The data is first ordered, the order statistic used here is banddepth. Plotted are then the

Linear Regression

Linear Regression Linear models with independently and identically distributed errors, and for errors with heteroscedasticity or autocorrelation. This module allows estimation by ordinary least squares (OLS), weighted least squares (WLS), generalized least squares (GLS), and feasible generalized least squares with autocorrelated AR(p) errors. See Module Reference for commands and arguments. Examples # Load modules and data import numpy as np import statsmodels.api as sm spector_data = sm.datas

static OLSResults.fittedvalues()

statsmodels.regression.linear_model.OLSResults.fittedvalues static OLSResults.fittedvalues()