tools.tools.clean0()

statsmodels.tools.tools.clean0 statsmodels.tools.tools.clean0(matrix) [source] Erase columns of zeros: can save some time in pseudoinverse.

static PHRegResults.standard_errors()

statsmodels.duration.hazard_regression.PHRegResults.standard_errors static PHRegResults.standard_errors() [source] Returns the standard errors of the parameter estimates.

static OLSResults.llf()

statsmodels.regression.linear_model.OLSResults.llf static OLSResults.llf()

KernelReg.r_squared()

statsmodels.nonparametric.kernel_regression.KernelReg.r_squared KernelReg.r_squared() [source] Returns the R-Squared for the nonparametric regression. Notes For more details see p.45 in [2] The R-Squared is calculated by: where is the mean calculated in fit at the exog points.

LinearIVGMM.fit()

statsmodels.sandbox.regression.gmm.LinearIVGMM.fit LinearIVGMM.fit(start_params=None, maxiter=10, inv_weights=None, weights_method='cov', wargs=(), has_optimal_weights=True, optim_method='bfgs', optim_args=None) Estimate parameters using GMM and return GMMResults TODO: weight and covariance arguments still need to be made consistent with similar options in other models, see RegressionResult.get_robustcov_results Parameters: start_params : array (optional) starting value for parameters ub m

MNLogit.loglike_and_score()

statsmodels.discrete.discrete_model.MNLogit.loglike_and_score MNLogit.loglike_and_score(params) [source] Returns log likelihood and score, efficiently reusing calculations. Note that both of these returned quantities will need to be negated before being minimized by the maximum likelihood fitting machinery.

static MultinomialResults.pvalues()

statsmodels.discrete.discrete_model.MultinomialResults.pvalues static MultinomialResults.pvalues()

static ARMAResults.maroots()

statsmodels.tsa.arima_model.ARMAResults.maroots static ARMAResults.maroots() [source]

PoissonGMLE.predict_distribution()

statsmodels.miscmodels.count.PoissonGMLE.predict_distribution PoissonGMLE.predict_distribution(exog) [source] return frozen scipy.stats distribution with mu at estimated prediction

VARResults.summary()

statsmodels.tsa.vector_ar.var_model.VARResults.summary VARResults.summary() [source] Compute console output summary of estimates Returns: summary : VARSummary