CompareMeans.ztest_ind()

statsmodels.stats.weightstats.CompareMeans.ztest_ind CompareMeans.ztest_ind(alternative='two-sided', usevar='pooled', value=0) [source] z-test for the null hypothesis of identical means Parameters: x1, x2 : array_like, 1-D or 2-D two independent samples, see notes for 2-D case alternative : string The alternative hypothesis, H1, has to be one of the following ?two-sided?: H1: difference in means not equal to value (default) ?larger? : H1: difference in means larger than value ?smaller? :

Transf_gen.moment()

statsmodels.sandbox.distributions.transformed.Transf_gen.moment Transf_gen.moment(n, *args, **kwds) n?th order non-central moment of distribution. Parameters: n : int, n>=1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). kwds : keyword arguments, optional These can include ?loc? and ?scale?, as well as other keyword arguments relevant for a given distribution.

Probit.from_formula()

statsmodels.discrete.discrete_model.Probit.from_formula classmethod Probit.from_formula(formula, data, subset=None, *args, **kwargs) Create a Model from a formula and dataframe. Parameters: formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a pandas.DataFrame args : e

stats.sandwich_covariance.cov_nw_groupsum()

statsmodels.stats.sandwich_covariance.cov_nw_groupsum statsmodels.stats.sandwich_covariance.cov_nw_groupsum(results, nlags, time, weights_func=, use_correction=0) [source] Driscoll and Kraay Panel robust covariance matrix Robust covariance matrix for panel data of Driscoll and Kraay. Assumes we have a panel of time series where the time index is available. The time index is assumed to represent equal spaced periods. At least one observation per period is required. Parameters: results : resu

IV2SLS.initialize()

statsmodels.sandbox.regression.gmm.IV2SLS.initialize IV2SLS.initialize() [source]

OLSInfluence.summary_frame()

statsmodels.stats.outliers_influence.OLSInfluence.summary_frame OLSInfluence.summary_frame() [source] Creates a DataFrame with all available influence results. Returns: frame : DataFrame A DataFrame with all results. Notes The resultant DataFrame contains six variables in addition to the DFBETAS. These are: cooks_d : Cook?s Distance defined in Influence.cooks_distance standard_resid : Standardized residuals defined in Influence.resid_studentized_internal hat_diag : The diagonal of the

Kernel Density Estimation

Kernel Density Estimation Link to Notebook GitHub In [1]: import numpy as np from scipy import stats import statsmodels.api as sm import matplotlib.pyplot as plt from statsmodels.distributions.mixture_rvs import mixture_rvs A univariate example. In [2]: np.random.seed(12345) In [3]: obs_dist1 = mixture_rvs([.25,.75], size=10000, dist=[stats.norm, stats.norm], kwargs = (dict(loc=-1,scale=.5),dict(loc=1,scale=.5))) In [4]: kde = sm.non

NegativeBinomial.predict()

statsmodels.genmod.families.family.NegativeBinomial.predict NegativeBinomial.predict(mu) Linear predictors based on given mu values. Parameters: mu : array The mean response variables Returns: lin_pred : array Linear predictors based on the mean response variables. The value of the link function at the given mu.

VAR.predict()

statsmodels.tsa.vector_ar.var_model.VAR.predict VAR.predict(params, start=None, end=None, lags=1, trend='c') [source] Returns in-sample predictions or forecasts

static OLSResults.llf()

statsmodels.regression.linear_model.OLSResults.llf static OLSResults.llf()