SkewNorm_gen.moment()

statsmodels.sandbox.distributions.extras.SkewNorm_gen.moment SkewNorm_gen.moment(n, *args, **kwds) n?th order non-central moment of distribution. Parameters: n : int, n>=1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). kwds : keyword arguments, optional These can include ?loc? and ?scale?, as well as other keyword arguments relevant for a given distribution.

SkewNorm_gen.logsf()

statsmodels.sandbox.distributions.extras.SkewNorm_gen.logsf SkewNorm_gen.logsf(x, *args, **kwds) Log of the survival function of the given RV. Returns the log of the ?survival function,? defined as (1 - cdf), evaluated at x. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional s

SkewNorm_gen.ppf()

statsmodels.sandbox.distributions.extras.SkewNorm_gen.ppf SkewNorm_gen.ppf(q, *args, **kwds) Percent point function (inverse of cdf) at q of the given RV. Parameters: q : array_like lower tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: x : array_like qu

SkewNorm_gen.logcdf()

statsmodels.sandbox.distributions.extras.SkewNorm_gen.logcdf SkewNorm_gen.logcdf(x, *args, **kwds) Log of the cumulative distribution function at x of the given RV. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: logcdf : array_like

CountModel.pdf()

statsmodels.discrete.discrete_model.CountModel.pdf CountModel.pdf(X) The probability density (mass) function of the model.

SkewNorm_gen.fit_loc_scale()

statsmodels.sandbox.distributions.extras.SkewNorm_gen.fit_loc_scale SkewNorm_gen.fit_loc_scale(data, *args) Estimate loc and scale parameters from data using 1st and 2nd moments. Parameters: data : array_like Data to fit. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns: Lhat : float Estimated location parameter for the data. Shat : float Estimated scale parameter for the data.

QuantReg.information()

statsmodels.regression.quantile_regression.QuantReg.information QuantReg.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.

VARProcess.long_run_effects()

statsmodels.tsa.vector_ar.var_model.VARProcess.long_run_effects VARProcess.long_run_effects() [source] Compute long-run effect of unit impulse

QuantReg.score()

statsmodels.regression.quantile_regression.QuantReg.score QuantReg.score(params) Score vector of model. The gradient of logL with respect to each parameter.

GEEResults.cov_params()

statsmodels.genmod.generalized_estimating_equations.GEEResults.cov_params GEEResults.cov_params(r_matrix=None, column=None, scale=None, cov_p=None, other=None) Returns the variance/covariance matrix. The variance/covariance matrix can be of a linear contrast of the estimates of params or all params multiplied by scale which will usually be an estimate of sigma^2. Scale is assumed to be a scalar. Parameters: r_matrix : array-like Can be 1d, or 2d. Can be used alone or with other. column :