SimpleTable.as_csv()

statsmodels.iolib.table.SimpleTable.as_csv SimpleTable.as_csv(**fmt_dict) [source] Return string, the table in CSV format. Currently only supports comma separator.

static OLSResults.nobs()

statsmodels.regression.linear_model.OLSResults.nobs static OLSResults.nobs()

IVGMM.get_error()

statsmodels.sandbox.regression.gmm.IVGMM.get_error IVGMM.get_error(params) [source]

OLSResults.compare_lr_test()

statsmodels.regression.linear_model.OLSResults.compare_lr_test OLSResults.compare_lr_test(restricted, large_sample=False) Likelihood ratio test to test whether restricted model is correct Parameters: restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, ssr, residual degrees of freedom, df_resid. large_sample : bool Flag indicating whether to

static RegressionResults.llf()

statsmodels.regression.linear_model.RegressionResults.llf static RegressionResults.llf()

static IVRegressionResults.rsquared()

statsmodels.sandbox.regression.gmm.IVRegressionResults.rsquared static IVRegressionResults.rsquared()

static VARResults.info_criteria()

statsmodels.tsa.vector_ar.var_model.VARResults.info_criteria static VARResults.info_criteria() [source] information criteria for lagorder selection

PoissonGMLE.loglikeobs()

statsmodels.miscmodels.count.PoissonGMLE.loglikeobs PoissonGMLE.loglikeobs(params)

SimpleTable.pad()

statsmodels.iolib.table.SimpleTable.pad SimpleTable.pad(s, width, align) [source] DEPRECATED: just use the pad function

sandbox.stats.multicomp.rankdata()

statsmodels.sandbox.stats.multicomp.rankdata statsmodels.sandbox.stats.multicomp.rankdata(x) [source] rankdata, equivalent to scipy.stats.rankdata just a different implementation, I have not yet compared speed