TransfTwo_gen.moment()

statsmodels.sandbox.distributions.transformed.TransfTwo_gen.moment TransfTwo_gen.moment(n, *args, **kwds) n?th order non-central moment of distribution. Parameters: n : int, n>=1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). kwds : keyword arguments, optional These can include ?loc? and ?scale?, as well as other keyword arguments relevant for a given distribution.

TLinearModel.initialize()

statsmodels.miscmodels.tmodel.TLinearModel.initialize TLinearModel.initialize() [source]

CountResults.initialize()

statsmodels.discrete.discrete_model.CountResults.initialize CountResults.initialize(model, params, **kwd)

PoissonGMLE.nloglike()

statsmodels.miscmodels.count.PoissonGMLE.nloglike PoissonGMLE.nloglike(params)

ARResults.remove_data()

statsmodels.tsa.ar_model.ARResults.remove_data ARResults.remove_data() remove data arrays, all nobs arrays from result and model This reduces the size of the instance, so it can be pickled with less memory. Currently tested for use with predict from an unpickled results and model instance. Warning Since data and some intermediate results have been removed calculating new statistics that require them will raise exceptions. The exception will occur the first time an attribute is accessed that

NormExpan_gen.entropy()

statsmodels.sandbox.distributions.extras.NormExpan_gen.entropy NormExpan_gen.entropy(*args, **kwds) Differential entropy of the RV. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1).

IRAnalysis.lr_effect_stderr()

statsmodels.tsa.vector_ar.irf.IRAnalysis.lr_effect_stderr IRAnalysis.lr_effect_stderr(orth=False) [source]

MNLogit.fit_regularized()

statsmodels.discrete.discrete_model.MNLogit.fit_regularized MNLogit.fit_regularized(start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=0.0001, qc_tol=0.03, **kwargs) Fit the model using a regularized maximum likelihood. The regularization method AND the solver used is determined by the argument method. Parameters: start_params : array-like, optional Initial guess of the solution for

tsa.ar_model.ARResults()

statsmodels.tsa.ar_model.ARResults class statsmodels.tsa.ar_model.ARResults(model, params, normalized_cov_params=None, scale=1.0) [source] Class to hold results from fitting an AR model. Parameters: model : AR Model instance Reference to the model that is fit. params : array The fitted parameters from the AR Model. normalized_cov_params : array inv(dot(X.T,X)) where X is the lagged values. scale : float, optional An estimate of the scale of the model. Returns: **Attributes** : aic

nbinom.inverse_deriv()

statsmodels.genmod.families.links.nbinom.inverse_deriv nbinom.inverse_deriv(z) Derivative of the inverse of the negative binomial transform Parameters: z : array-like Usually the linear predictor for a GLM or GEE model Returns: The value of the inverse of the derivative of the negative binomial : link :