BinaryResults.remove_data()

statsmodels.discrete.discrete_model.BinaryResults.remove_data BinaryResults.remove_data() remove data arrays, all nobs arrays from result and model This reduces the size of the instance, so it can be pickled with less memory. Currently tested for use with predict from an unpickled results and model instance. Warning Since data and some intermediate results have been removed calculating new statistics that require them will raise exceptions. The exception will occur the first time an attribu

static QuantRegResults.f_pvalue()

statsmodels.regression.quantile_regression.QuantRegResults.f_pvalue static QuantRegResults.f_pvalue()

miscmodels.count.PoissonGMLE()

statsmodels.miscmodels.count.PoissonGMLE class statsmodels.miscmodels.count.PoissonGMLE(endog, exog=None, loglike=None, score=None, hessian=None, missing='none', extra_params_names=None, **kwds) [source] Maximum Likelihood Estimation of Poisson Model This is an example for generic MLE which has the same statistical model as discretemod.Poisson. Except for defining the negative log-likelihood method, all methods and results are generic. Gradients and Hessian and all resulting statistics are b

NonlinearIVGMM.calc_weightmatrix()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.calc_weightmatrix NonlinearIVGMM.calc_weightmatrix(moms, weights_method='cov', wargs=(), params=None) calculate omega or the weighting matrix Parameters: moms : array, (nobs, nmoms) moment conditions for all observations evaluated at a parameter value weights_method : string ?cov? If method=?cov? is cov then the matrix is calculated as simple covariance of the moment conditions. see fit method for available aoptions for the weight and cov

LinearIVGMM.gmmobjective()

statsmodels.sandbox.regression.gmm.LinearIVGMM.gmmobjective LinearIVGMM.gmmobjective(params, weights) objective function for GMM minimization Parameters: params : array parameter values at which objective is evaluated weights : array weighting matrix Returns: jval : float value of objective function

IVGMM.fitgmm()

statsmodels.sandbox.regression.gmm.IVGMM.fitgmm IVGMM.fitgmm(start, weights=None, optim_method='bfgs', optim_args=None) estimate parameters using GMM Parameters: start : array_like starting values for minimization weights : array weighting matrix for moment conditions. If weights is None, then the identity matrix is used Returns: paramest : array estimated parameters Notes todo: add fixed parameter option, not here ??? uses scipy.optimize.fmin

ARIMAResults.f_test()

statsmodels.tsa.arima_model.ARIMAResults.f_test ARIMAResults.f_test(r_matrix, cov_p=None, scale=1.0, invcov=None) Compute the F-test for a joint linear hypothesis. This is a special case of wald_test that always uses the F distribution. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be giv

GMMResults.calc_cov_params()

statsmodels.sandbox.regression.gmm.GMMResults.calc_cov_params GMMResults.calc_cov_params(moms, gradmoms, weights=None, use_weights=False, has_optimal_weights=True, weights_method='cov', wargs=()) [source] calculate covariance of parameter estimates not all options tried out yet If weights matrix is given, then the formula use to calculate cov_params depends on whether has_optimal_weights is true. If no weights are given, then the weight matrix is calculated with the given method, and has_opt

stats.diagnostic.compare_cox

statsmodels.stats.diagnostic.compare_cox statsmodels.stats.diagnostic.compare_cox = Cox Test for non-nested models Parameters: results_x : Result instance result instance of first model results_z : Result instance result instance of second model attach : bool Formulas from Greene, section 8.3.4 translated to code : produces correct results for Example 8.3, Greene :

tools.numdiff.approx_hess_cs()

statsmodels.tools.numdiff.approx_hess_cs statsmodels.tools.numdiff.approx_hess_cs(x, f, epsilon=None, args=(), kwargs={}) [source] Calculate Hessian with complex-step derivative approximation Calculate Hessian with finite difference derivative approximation Parameters: x : array_like value at which function derivative is evaluated f : function function of one array f(x, *args, **kwargs) epsilon : float or array-like, optional Stepsize used, if None, then stepsize is automatically chose