CountModel.loglike()

statsmodels.discrete.discrete_model.CountModel.loglike CountModel.loglike(params) Log-likelihood of model.

NormExpan_gen.fit_loc_scale()

statsmodels.sandbox.distributions.extras.NormExpan_gen.fit_loc_scale NormExpan_gen.fit_loc_scale(data, *args) Estimate loc and scale parameters from data using 1st and 2nd moments. Parameters: data : array_like Data to fit. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns: Lhat : float Estimated location parameter for the data. Shat : float Estimated scale parameter for the data.

regression.mixed_linear_model.MixedLM()

statsmodels.regression.mixed_linear_model.MixedLM class statsmodels.regression.mixed_linear_model.MixedLM(endog, exog, groups, exog_re=None, use_sqrt=True, missing='none', **kwargs) [source] An object specifying a linear mixed effects model. Use the fit method to fit the model and obtain a results object. Parameters: endog : 1d array-like The dependent variable exog : 2d array-like A matrix of covariates used to determine the mean structure (the ?fixed effects? covariates). groups : 1d

static OLSResults.cov_HC3()

statsmodels.regression.linear_model.OLSResults.cov_HC3 static OLSResults.cov_HC3() See statsmodels.RegressionResults

static MultinomialResults.bic()

statsmodels.discrete.discrete_model.MultinomialResults.bic static MultinomialResults.bic() [source]

ArmaProcess.periodogram()

statsmodels.tsa.arima_process.ArmaProcess.periodogram ArmaProcess.periodogram(nobs=None) [source] periodogram for ARMA process given by lag-polynomials ar and ma Parameters: ar : array_like autoregressive lag-polynomial with leading 1 and lhs sign ma : array_like moving average lag-polynomial with leading 1 worN : {None, int}, optional option for scipy.signal.freqz (read ?w or N?) If None, then compute at 512 frequencies around the unit circle. If a single integer, the compute at that

sandbox.distributions.transformed.loggammaexpg

statsmodels.sandbox.distributions.transformed.loggammaexpg statsmodels.sandbox.distributions.transformed.loggammaexpg = univariate distribution of a non-linear monotonic transformation of a random variable

tsa.filters.bk_filter.bkfilter()

statsmodels.tsa.filters.bk_filter.bkfilter statsmodels.tsa.filters.bk_filter.bkfilter(X, low=6, high=32, K=12) [source] Baxter-King bandpass filter Parameters: X : array-like A 1 or 2d ndarray. If 2d, variables are assumed to be in columns. low : float Minimum period for oscillations, ie., Baxter and King suggest that the Burns-Mitchell U.S. business cycle has 6 for quarterly data and 1.5 for annual data. high : float Maximum period for oscillations BK suggest that the U.S. business cy

Import Paths and Structure

Import Paths and Structure We offer two ways of importing functions and classes from statsmodels: API import for interactive useAllows tab completion Direct import for programsAvoids importing unnecessary modules and commands API Import for interactive use For interactive use the recommended import is: import statsmodels.api as sm Importing statsmodels.api will load most of the public parts of statsmodels. This makes most functions and classes conveniently available within one or two lev

static VARResults.sigma_u_mle()

statsmodels.tsa.vector_ar.var_model.VARResults.sigma_u_mle static VARResults.sigma_u_mle() [source] (Biased) maximum likelihood estimate of noise process covariance