static RLMResults.tvalues()

statsmodels.robust.robust_linear_model.RLMResults.tvalues static RLMResults.tvalues() Return the t-statistic for a given parameter estimate.

regression.linear_model.OLSResults()

statsmodels.regression.linear_model.OLSResults class statsmodels.regression.linear_model.OLSResults(model, params, normalized_cov_params=None, scale=1.0, cov_type='nonrobust', cov_kwds=None, use_t=None) [source] Results class for for an OLS model. Most of the methods and attributes are inherited from RegressionResults. The special methods that are only available for OLS are: get_influence outlier_test el_test conf_int_el See also RegressionResults Methods HC0_se() See statsmodels.Regressi

static NegativeBinomialResults.bse()

statsmodels.discrete.discrete_model.NegativeBinomialResults.bse static NegativeBinomialResults.bse()

static OLSResults.fvalue()

statsmodels.regression.linear_model.OLSResults.fvalue static OLSResults.fvalue()

iolib.table.SimpleTable()

statsmodels.iolib.table.SimpleTable class statsmodels.iolib.table.SimpleTable(data, headers=None, stubs=None, title='', datatypes=None, csv_fmt=None, txt_fmt=None, ltx_fmt=None, html_fmt=None, celltype=None, rowtype=None, **fmt_dict) [source] Produce a simple ASCII, CSV, HTML, or LaTeX table from a rectangular (2d!) array of data, not necessarily numerical. Directly supports at most one header row, which should be the length of data[0]. Directly supports at most one stubs column, which must

TransfTwo_gen.sf()

statsmodels.sandbox.distributions.transformed.TransfTwo_gen.sf TransfTwo_gen.sf(x, *args, **kwds) Survival function (1-cdf) at x of the given RV. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: sf : array_like Survival function evalu

ArmaFft.from_estimation()

statsmodels.sandbox.tsa.fftarma.ArmaFft.from_estimation classmethod ArmaFft.from_estimation(model_results, nobs=None) Create ArmaProcess instance from ARMA estimation results Parameters: model_results : ARMAResults instance A fitted model nobs : int, optional If None, nobs is taken from the results

BinaryResults.load()

statsmodels.discrete.discrete_model.BinaryResults.load classmethod BinaryResults.load(fname) load a pickle, (class method) Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. Returns: unpickled instance :

static ARResults.pvalues()

statsmodels.tsa.ar_model.ARResults.pvalues static ARResults.pvalues() [source]

IVGMMResults.cov_params()

statsmodels.sandbox.regression.gmm.IVGMMResults.cov_params IVGMMResults.cov_params(**kwds)