tools.tools.recipr()

statsmodels.tools.tools.recipr statsmodels.tools.tools.recipr(X) [source] Return the reciprocal of an array, setting all entries less than or equal to 0 to 0. Therefore, it presumes that X should be positive in general.

PoissonOffsetGMLE.score_obs()

statsmodels.miscmodels.count.PoissonOffsetGMLE.score_obs PoissonOffsetGMLE.score_obs(params, **kwds) Jacobian/Gradient of log-likelihood evaluated at params for each observation.

SimpleTable.as_text()

statsmodels.iolib.table.SimpleTable.as_text SimpleTable.as_text(**fmt_dict) [source] Return string, the table as text.

TLinearModel.hessian()

statsmodels.miscmodels.tmodel.TLinearModel.hessian TLinearModel.hessian(params) Hessian of log-likelihood evaluated at params

CountResults.summary()

statsmodels.discrete.discrete_model.CountResults.summary CountResults.summary(yname=None, xname=None, title=None, alpha=0.05, yname_list=None) Summarize the Regression Results Parameters: yname : string, optional Default is y xname : list of strings, optional Default is var_## for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns:

Nested.summary()

statsmodels.genmod.cov_struct.Nested.summary Nested.summary() [source] Returns a summary string describing the state of the dependence structure.

PoissonGMLE.information()

statsmodels.miscmodels.count.PoissonGMLE.information PoissonGMLE.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.

SUR.predict()

statsmodels.sandbox.sysreg.SUR.predict SUR.predict(design) [source]

static ProbitResults.bic()

statsmodels.discrete.discrete_model.ProbitResults.bic static ProbitResults.bic()

PHRegResults.t_test()

statsmodels.duration.hazard_regression.PHRegResults.t_test PHRegResults.t_test(r_matrix, cov_p=None, scale=None, use_t=None) Compute a t-test for a each linear hypothesis of the form Rb = q Parameters: r_matrix : array-like, str, tuple array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tuple