graphics.functional.fboxplot()

statsmodels.graphics.functional.fboxplot statsmodels.graphics.functional.fboxplot(data, xdata=None, labels=None, depth=None, method='MBD', wfactor=1.5, ax=None, plot_opts={}) [source] Plot functional boxplot. A functional boxplot is the analog of a boxplot for functional data. Functional data is any type of data that varies over a continuum, i.e. curves, probabillity distributions, seasonal data, etc. The data is first ordered, the order statistic used here is banddepth. Plotted are then the

IVGMMResults.wald_test()

statsmodels.sandbox.regression.gmm.IVGMMResults.wald_test IVGMMResults.wald_test(r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None) Compute a Wald-test for a joint linear hypothesis. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tup

iolib.foreign.savetxt()

statsmodels.iolib.foreign.savetxt statsmodels.iolib.foreign.savetxt(fname, X, names=None, fmt='%.18e', delimiter=' ') [source] Save an array to a text file. This is just a copy of numpy.savetxt patched to support structured arrays or a header of names. Does not include py3 support now in savetxt. Parameters: fname : filename or file handle If the filename ends in .gz, the file is automatically saved in compressed gzip format. loadtxt understands gzipped files transparently. X : array_like

regression.linear_model.GLSAR()

statsmodels.regression.linear_model.GLSAR class statsmodels.regression.linear_model.GLSAR(endog, exog=None, rho=1, missing='none', **kwargs) [source] A regression model with an AR(p) covariance structure. Parameters: endog : array-like 1-d endogenous response variable. The dependent variable. exog : array-like A nobs x k array where nobs is the number of observations and k is the number of regressors. An intercept is not included by default and should be added by the user. See statsmodel

RegressionResults.f_test()

statsmodels.regression.linear_model.RegressionResults.f_test RegressionResults.f_test(r_matrix, cov_p=None, scale=1.0, invcov=None) Compute the F-test for a joint linear hypothesis. This is a special case of wald_test that always uses the F distribution. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses

OLSResults.f_test()

statsmodels.regression.linear_model.OLSResults.f_test OLSResults.f_test(r_matrix, cov_p=None, scale=1.0, invcov=None) Compute the F-test for a joint linear hypothesis. This is a special case of wald_test that always uses the F distribution. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be

Regression diagnostics

Regression diagnostics Link to Notebook GitHub This example file shows how to use a few of the statsmodels regression diagnostic tests in a real-life context. You can learn about more tests and find out more information abou the tests here on the Regression Diagnostics page. Note that most of the tests described here only return a tuple of numbers, without any annotation. A full description of outputs is always included in the docstring and in the online statsmodels documentation. For pres

QuantReg.fit_regularized()

statsmodels.regression.quantile_regression.QuantReg.fit_regularized QuantReg.fit_regularized(method='coord_descent', maxiter=1000, alpha=0.0, L1_wt=1.0, start_params=None, cnvrg_tol=1e-08, zero_tol=1e-08, **kwargs) Return a regularized fit to a linear regression model. Parameters: method : string Only the coordinate descent algorithm is implemented. maxiter : integer The maximum number of iteration cycles (an iteration cycle involves running coordinate descent on all variables). alpha :

graphics.regressionplots.plot_partregress()

statsmodels.graphics.regressionplots.plot_partregress statsmodels.graphics.regressionplots.plot_partregress(endog, exog_i, exog_others, data=None, title_kwargs={}, obs_labels=True, label_kwargs={}, ax=None, ret_coords=False, **kwargs) [source] Plot partial regression for a single regressor. Parameters: endog : ndarray or string endogenous or response variable. If string is given, you can use a arbitrary translations as with a formula. exog_i : ndarray or string exogenous, explanatory var

nonparametric.kernel_regression.KernelReg()

statsmodels.nonparametric.kernel_regression.KernelReg class statsmodels.nonparametric.kernel_regression.KernelReg(endog, exog, var_type, reg_type='ll', bw='cv_ls', defaults=) [source] Nonparametric kernel regression class. Calculates the conditional mean E[y|X] where y = g(X) + e. Note that the ?local constant? type of regression provided here is also known as Nadaraya-Watson kernel regression; ?local linear? is an extension of that which suffers less from bias issues at the edge of the supp