discrete.discrete_model.LogitResults()

statsmodels.discrete.discrete_model.LogitResults class statsmodels.discrete.discrete_model.LogitResults(model, mlefit, cov_type='nonrobust', cov_kwds=None, use_t=None) [source] A results class for Logit Model Parameters: model : A DiscreteModel instance params : array-like The parameters of a fitted model. hessian : array-like The hessian of the fitted model. scale : float A scale parameter for the covariance matrix. Returns: *Attributes* : aic : float Akaike information criterion.

sandbox.stats.multicomp.catstack()

statsmodels.sandbox.stats.multicomp.catstack statsmodels.sandbox.stats.multicomp.catstack(args) [source]

NonlinearIVGMM.fit()

statsmodels.sandbox.regression.gmm.NonlinearIVGMM.fit NonlinearIVGMM.fit(start_params=None, maxiter=10, inv_weights=None, weights_method='cov', wargs=(), has_optimal_weights=True, optim_method='bfgs', optim_args=None) Estimate parameters using GMM and return GMMResults TODO: weight and covariance arguments still need to be made consistent with similar options in other models, see RegressionResult.get_robustcov_results Parameters: start_params : array (optional) starting value for parameter

static ARResults.hqic()

statsmodels.tsa.ar_model.ARResults.hqic static ARResults.hqic() [source]

PHRegResults.initialize()

statsmodels.duration.hazard_regression.PHRegResults.initialize PHRegResults.initialize(model, params, **kwd)

nbinom.inverse_deriv()

statsmodels.genmod.families.links.nbinom.inverse_deriv nbinom.inverse_deriv(z) Derivative of the inverse of the negative binomial transform Parameters: z : array-like Usually the linear predictor for a GLM or GEE model Returns: The value of the inverse of the derivative of the negative binomial : link :

MNLogit.fit_regularized()

statsmodels.discrete.discrete_model.MNLogit.fit_regularized MNLogit.fit_regularized(start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=0.0001, qc_tol=0.03, **kwargs) Fit the model using a regularized maximum likelihood. The regularization method AND the solver used is determined by the argument method. Parameters: start_params : array-like, optional Initial guess of the solution for

tsa.ar_model.ARResults()

statsmodels.tsa.ar_model.ARResults class statsmodels.tsa.ar_model.ARResults(model, params, normalized_cov_params=None, scale=1.0) [source] Class to hold results from fitting an AR model. Parameters: model : AR Model instance Reference to the model that is fit. params : array The fitted parameters from the AR Model. normalized_cov_params : array inv(dot(X.T,X)) where X is the lagged values. scale : float, optional An estimate of the scale of the model. Returns: **Attributes** : aic

NegativeBinomialResults.normalized_cov_params()

statsmodels.discrete.discrete_model.NegativeBinomialResults.normalized_cov_params NegativeBinomialResults.normalized_cov_params()

VARProcess.plot_acorr()

statsmodels.tsa.vector_ar.var_model.VARProcess.plot_acorr VARProcess.plot_acorr(nlags=10, linewidth=8) [source] Plot theoretical autocorrelation function