Distributions

Distributions This section collects various additional functions and methods for statistical distributions. Empirical Distributions ECDF(x[, side]) Return the Empirical CDF of an array as a step function. StepFunction(x, y[, ival, sorted, side]) A basic step function. Distribution Extras Skew Distributions SkewNorm_gen() univariate Skew-Normal distribution of Azzalini SkewNorm2_gen([momtype, a, b, xtol, ...]) univariate Skew-Normal distribution of Azzalini ACSkewT_gen() univariate Skew-

PoissonGMLE.nloglike()

statsmodels.miscmodels.count.PoissonGMLE.nloglike PoissonGMLE.nloglike(params)

Transf_gen.entropy()

statsmodels.sandbox.distributions.transformed.Transf_gen.entropy Transf_gen.entropy(*args, **kwds) Differential entropy of the RV. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1).

TransfTwo_gen.est_loc_scale()

statsmodels.sandbox.distributions.transformed.TransfTwo_gen.est_loc_scale TransfTwo_gen.est_loc_scale(*args, **kwds) est_loc_scale is deprecated! This function is deprecated, use self.fit_loc_scale(data) instead.

RegressionResults.get_robustcov_results()

statsmodels.regression.linear_model.RegressionResults.get_robustcov_results RegressionResults.get_robustcov_results(cov_type='HC1', use_t=None, **kwds) [source] create new results instance with robust covariance as default Parameters: cov_type : string the type of robust sandwich estimator to use. see Notes below use_t : bool If true, then the t distribution is used for inference. If false, then the normal distribution is used. kwds : depends on cov_type Required or optional arguments

ARMAResults.cov_params()

statsmodels.tsa.arima_model.ARMAResults.cov_params ARMAResults.cov_params() [source]

CountResults.initialize()

statsmodels.discrete.discrete_model.CountResults.initialize CountResults.initialize(model, params, **kwd)

static RegressionResults.tvalues()

statsmodels.regression.linear_model.RegressionResults.tvalues static RegressionResults.tvalues() Return the t-statistic for a given parameter estimate.

NegativeBinomial.hessian()

statsmodels.discrete.discrete_model.NegativeBinomial.hessian NegativeBinomial.hessian(params) The Hessian matrix of the model

TLinearModel.initialize()

statsmodels.miscmodels.tmodel.TLinearModel.initialize TLinearModel.initialize() [source]