static QuantRegResults.rsquared()

statsmodels.regression.quantile_regression.QuantRegResults.rsquared static QuantRegResults.rsquared() [source]

static GLMResults.resid_pearson()

statsmodels.genmod.generalized_linear_model.GLMResults.resid_pearson static GLMResults.resid_pearson() [source]

TransfTwo_gen.moment()

statsmodels.sandbox.distributions.transformed.TransfTwo_gen.moment TransfTwo_gen.moment(n, *args, **kwds) n?th order non-central moment of distribution. Parameters: n : int, n>=1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). kwds : keyword arguments, optional These can include ?loc? and ?scale?, as well as other keyword arguments relevant for a given distribution.

static IVRegressionResults.cov_HC1()

statsmodels.sandbox.regression.gmm.IVRegressionResults.cov_HC1 static IVRegressionResults.cov_HC1() See statsmodels.RegressionResults

RegressionResults.compare_lr_test()

statsmodels.regression.linear_model.RegressionResults.compare_lr_test RegressionResults.compare_lr_test(restricted, large_sample=False) [source] Likelihood ratio test to test whether restricted model is correct Parameters: restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, ssr, residual degrees of freedom, df_resid. large_sample : bool Flag

PoissonOffsetGMLE.information()

statsmodels.miscmodels.count.PoissonOffsetGMLE.information PoissonOffsetGMLE.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.

Transf_gen.nnlf()

statsmodels.sandbox.distributions.transformed.Transf_gen.nnlf Transf_gen.nnlf(theta, x) Return negative loglikelihood function Notes This is -sum(log pdf(x, theta), axis=0) where theta are the parameters (including loc and scale).

sandbox.regression.gmm.GMM()

statsmodels.sandbox.regression.gmm.GMM class statsmodels.sandbox.regression.gmm.GMM(endog, exog, instrument, k_moms=None, k_params=None, missing='none', **kwds) [source] Class for estimation by Generalized Method of Moments needs to be subclassed, where the subclass defined the moment conditions momcond Parameters: endog : array endogenous variable, see notes exog : array array of exogenous variables, see notes instrument : array array of instruments, see notes nmoms : None or int nu

sandbox.stats.multicomp.GroupsStats()

statsmodels.sandbox.stats.multicomp.GroupsStats class statsmodels.sandbox.stats.multicomp.GroupsStats(x, useranks=False, uni=None, intlab=None) [source] statistics by groups (another version) groupstats as a class with lazy evaluation (not yet - decorators are still missing) written this time as equivalent of scipy.stats.rankdata gs = GroupsStats(X, useranks=True) assert_almost_equal(gs.groupmeanfilter, stats.rankdata(X[:,0]), 15) TODO: incomplete doc strings Methods groupdemean() groupss

static LogitResults.pvalues()

statsmodels.discrete.discrete_model.LogitResults.pvalues static LogitResults.pvalues()