Time Series analysis tsa

Time Series analysis tsa statsmodels.tsa contains model classes and functions that are useful for time series analysis. This currently includes univariate autoregressive models (AR), vector autoregressive models (VAR) and univariate autoregressive moving average models (ARMA). It also includes descriptive statistics for time series, for example autocorrelation, partial autocorrelation function and periodogram, as well as the corresponding theoretical properties of ARMA or related processes. It

BinaryModel.pdf()

statsmodels.discrete.discrete_model.BinaryModel.pdf BinaryModel.pdf(X) The probability density (mass) function of the model.

ARResults.wald_test()

statsmodels.tsa.ar_model.ARResults.wald_test ARResults.wald_test(r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None) Compute a Wald-test for a joint linear hypothesis. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tuple of arrays in

ARMA.loglike_kalman()

statsmodels.tsa.arima_model.ARMA.loglike_kalman ARMA.loglike_kalman(params, set_sigma2=True) [source] Compute exact loglikelihood for ARMA(p,q) model by the Kalman Filter.

GroupsStats.runbasic_old()

statsmodels.sandbox.stats.multicomp.GroupsStats.runbasic_old GroupsStats.runbasic_old(useranks=False) [source]

graphics.gofplots.qqplot()

statsmodels.graphics.gofplots.qqplot statsmodels.graphics.gofplots.qqplot(data, dist=, distargs=(), a=0, loc=0, scale=1, fit=False, line=None, ax=None) [source] Q-Q plot of the quantiles of x versus the quantiles/ppf of a distribution. Can take arguments specifying the parameters for dist or fit them automatically. (See fit under Parameters.) Parameters: data : array-like 1d data array dist : A scipy.stats or statsmodels distribution Compare x against dist. The default is scipy.stats.dis

static BinaryResults.bse()

statsmodels.discrete.discrete_model.BinaryResults.bse static BinaryResults.bse()

static GLMResults.llf()

statsmodels.genmod.generalized_linear_model.GLMResults.llf static GLMResults.llf() [source]

BinaryResults.f_test()

statsmodels.discrete.discrete_model.BinaryResults.f_test BinaryResults.f_test(r_matrix, cov_p=None, scale=1.0, invcov=None) Compute the F-test for a joint linear hypothesis. This is a special case of wald_test that always uses the F distribution. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test

TransfTwo_gen.median()

statsmodels.sandbox.distributions.transformed.TransfTwo_gen.median TransfTwo_gen.median(*args, **kwds) Median of the distribution. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional Location parameter, Default is 0. scale : array_like, optional Scale parameter, Default is 1. Returns: median : float The median of the distribution. See also stats.distribut