static ProbPlot.sample_quantiles()

statsmodels.graphics.gofplots.ProbPlot.sample_quantiles static ProbPlot.sample_quantiles() [source]

static ProbitResults.resid_response()

statsmodels.discrete.discrete_model.ProbitResults.resid_response static ProbitResults.resid_response() The response residuals Notes Response residuals are defined to be where .

static ProbitResults.tvalues()

statsmodels.discrete.discrete_model.ProbitResults.tvalues static ProbitResults.tvalues() Return the t-statistic for a given parameter estimate.

static ProbitResults.resid_dev()

statsmodels.discrete.discrete_model.ProbitResults.resid_dev static ProbitResults.resid_dev() Deviance residuals Notes Deviance residuals are defined where and is the total number of observations sharing the covariate pattern . For now is always set to 1.

static ProbitResults.resid_generalized()

statsmodels.discrete.discrete_model.ProbitResults.resid_generalized static ProbitResults.resid_generalized() [source] Generalized residuals Notes The generalized residuals for the Probit model are defined

static ProbitResults.resid_pearson()

statsmodels.discrete.discrete_model.ProbitResults.resid_pearson static ProbitResults.resid_pearson() Pearson residuals Notes Pearson residuals are defined to be where and is the total number of observations sharing the covariate pattern . For now is always set to 1.

static ProbitResults.prsquared()

statsmodels.discrete.discrete_model.ProbitResults.prsquared static ProbitResults.prsquared()

static ProbitResults.pvalues()

statsmodels.discrete.discrete_model.ProbitResults.pvalues static ProbitResults.pvalues()

static ProbitResults.llr_pvalue()

statsmodels.discrete.discrete_model.ProbitResults.llr_pvalue static ProbitResults.llr_pvalue()

static ProbitResults.llr()

statsmodels.discrete.discrete_model.ProbitResults.llr static ProbitResults.llr()