static QuantRegResults.mse_total()

statsmodels.regression.quantile_regression.QuantRegResults.mse_total static QuantRegResults.mse_total() [source]

stats.moment_helpers.mc2mvsk()

statsmodels.stats.moment_helpers.mc2mvsk statsmodels.stats.moment_helpers.mc2mvsk(args) [source] convert central moments to mean, variance, skew, kurtosis

RegressionResults.initialize()

statsmodels.regression.linear_model.RegressionResults.initialize RegressionResults.initialize(model, params, **kwd)

DiscreteModel.initialize()

statsmodels.discrete.discrete_model.DiscreteModel.initialize DiscreteModel.initialize() [source] Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model.

VARResults.plotsim()

statsmodels.tsa.vector_ar.var_model.VARResults.plotsim VARResults.plotsim(steps=1000) Plot a simulation from the VAR(p) process for the desired number of steps

SimpleTable.index()

statsmodels.iolib.table.SimpleTable.index SimpleTable.index(value[, start[, stop]]) ? integer -- return first index of value. Raises ValueError if the value is not present.

iolib.smpickle.load_pickle()

statsmodels.iolib.smpickle.load_pickle statsmodels.iolib.smpickle.load_pickle(fname) [source] Load a previously saved object from file Parameters: fname : str Filename to unpickle Notes This method can be used to load both models and results.

Autoregressive.initialize()

statsmodels.genmod.cov_struct.Autoregressive.initialize Autoregressive.initialize(model) Called by GEE, used by implementations that need additional setup prior to running fit. Parameters: model : GEE class A reference to the parent GEE class instance.

static LogitResults.bse()

statsmodels.discrete.discrete_model.LogitResults.bse static LogitResults.bse()

static QuantRegResults.bse()

statsmodels.regression.quantile_regression.QuantRegResults.bse static QuantRegResults.bse()