identity.deriv2()

statsmodels.genmod.families.links.identity.deriv2 identity.deriv2(p) Second derivative of the link function g??(p) implemented through numerical differentiation

discrete.discrete_model.Poisson()

statsmodels.discrete.discrete_model.Poisson class statsmodels.discrete.discrete_model.Poisson(endog, exog, offset=None, exposure=None, missing='none', **kwargs) [source] Poisson model for count data Parameters: endog : array-like 1-d endogenous response variable. The dependent variable. exog : array-like A nobs x k array where nobs is the number of observations and k is the number of regressors. An intercept is not included by default and should be added by the user. See statsmodels.tool

VAR.information()

statsmodels.tsa.vector_ar.var_model.VAR.information VAR.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.

static IVGMMResults.q()

statsmodels.sandbox.regression.gmm.IVGMMResults.q static IVGMMResults.q()

tsa.x13.x13_arima_analysis()

statsmodels.tsa.x13.x13_arima_analysis statsmodels.tsa.x13.x13_arima_analysis(endog, maxorder=(2, 1), maxdiff=(2, 1), diff=None, exog=None, log=None, outlier=True, trading=False, forecast_years=None, retspec=False, speconly=False, start=None, freq=None, print_stdout=False, x12path=None, prefer_x13=True) [source] Perform x13-arima analysis for monthly or quarterly data. Parameters: endog : array-like, pandas.Series The series to model. It is best to use a pandas object with a DatetimeIndex

Vector Autoregressions tsa.vector_ar

Vector Autoregressions tsa.vector_ar VAR(p) processes We are interested in modeling a multivariate time series , where denotes the number of observations and the number of variables. One way of estimating relationships between the time series and their lagged values is the vector autoregression process: where is a coefficient matrix. We follow in large part the methods and notation of Lutkepohl (2005), which we will not develop here. Model fitting Note The classes referenced below ar

static IVRegressionResults.eigenvals()

statsmodels.sandbox.regression.gmm.IVRegressionResults.eigenvals static IVRegressionResults.eigenvals() Return eigenvalues sorted in decreasing order.

GLS.information()

statsmodels.regression.linear_model.GLS.information GLS.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.

sandbox.distributions.transformed.ExpTransf_gen()

statsmodels.sandbox.distributions.transformed.ExpTransf_gen class statsmodels.sandbox.distributions.transformed.ExpTransf_gen(kls, *args, **kwargs) [source] Distribution based on log/exp transformation the constructor can be called with a distribution class and generates the distribution of the transformed random variable Methods cdf(x, *args, **kwds) Cumulative distribution function of the given RV. entropy(*args, **kwds) Differential entropy of the RV. est_loc_scale(*args, **kwds) est_

LinearIVGMM.fitstart()

statsmodels.sandbox.regression.gmm.LinearIVGMM.fitstart LinearIVGMM.fitstart()