IVGMM.score()

statsmodels.sandbox.regression.gmm.IVGMM.score IVGMM.score(params, weights, epsilon=None, centered=True)

static GEEResults.split_resid()

statsmodels.genmod.generalized_estimating_equations.GEEResults.split_resid static GEEResults.split_resid() Returns the residuals, the endogeneous data minus the fitted values from the model. The residuals are returned as a list of arrays containing the residuals for each cluster.

static KDEUnivariate.sf()

statsmodels.nonparametric.kde.KDEUnivariate.sf static KDEUnivariate.sf() [source] Returns the survival function evaluated at the support. Notes Will not work if fit has not been called.

Generalized Linear Models

Generalized Linear Models Generalized linear models currently supports estimation using the one-parameter exponential families See Module Reference for commands and arguments. Examples # Load modules and data import statsmodels.api as sm data = sm.datasets.scotland.load() data.exog = sm.add_constant(data.exog) # Instantiate a gamma family model with the default link function. gamma_model = sm.GLM(data.endog, data.exog, family=sm.families.Gamma()) gamma_results = gamma_model.fit() Detailed ex

ARMA.hessian()

statsmodels.tsa.arima_model.ARMA.hessian ARMA.hessian(params) [source] Compute the Hessian at params, Notes This is a numerical approximation.

sandbox.sysreg.SUR()

statsmodels.sandbox.sysreg.SUR class statsmodels.sandbox.sysreg.SUR(sys, sigma=None, dfk=None) [source] Seemingly Unrelated Regression Parameters: sys : list [endog1, exog1, endog2, exog2,...] It will be of length 2 x M, where M is the number of equations endog = exog. sigma : array-like M x M array where sigma[i,j] is the covariance between equation i and j dfk : None, ?dfk1?, or ?dfk2? Default is None. Correction for the degrees of freedom should be specified for small samples. See t

MultinomialResults.t_test()

statsmodels.discrete.discrete_model.MultinomialResults.t_test MultinomialResults.t_test(r_matrix, cov_p=None, scale=None, use_t=None) Compute a t-test for a each linear hypothesis of the form Rb = q Parameters: r_matrix : array-like, str, tuple array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple :

ACSkewT_gen.nnlf()

statsmodels.sandbox.distributions.extras.ACSkewT_gen.nnlf ACSkewT_gen.nnlf(theta, x) Return negative loglikelihood function Notes This is -sum(log pdf(x, theta), axis=0) where theta are the parameters (including loc and scale).

OLSResults.t_test()

statsmodels.regression.linear_model.OLSResults.t_test OLSResults.t_test(r_matrix, cov_p=None, scale=None, use_t=None) Compute a t-test for a each linear hypothesis of the form Rb = q Parameters: r_matrix : array-like, str, tuple array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tuple of arra

sandbox.stats.runs.mcnemar()

statsmodels.sandbox.stats.runs.mcnemar statsmodels.sandbox.stats.runs.mcnemar(x, y=None, exact=True, correction=True) [source] McNemar test Parameters: x, y : array_like two paired data samples. If y is None, then x can be a 2 by 2 contingency table. x and y can have more than one dimension, then the results are calculated under the assumption that axis zero contains the observation for the samples. exact : bool If exact is true, then the binomial distribution will be used. If exact is f