SkewNorm2_gen.std()

statsmodels.sandbox.distributions.extras.SkewNorm2_gen.std SkewNorm2_gen.std(*args, **kwds) Standard deviation of the distribution. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: std : float standard deviation of the distribution

Independence.covariance_matrix()

statsmodels.genmod.cov_struct.Independence.covariance_matrix Independence.covariance_matrix(expval, index) [source] Returns the working covariance or correlation matrix for a given cluster of data. Parameters: endog_expval: array-like : The expected values of endog for the cluster for which the covariance or correlation matrix will be returned index: integer : The index of the cluster for which the covariane or correlation matrix will be returned Returns: M: matrix : The covariance o

static VARResults.cov_params()

statsmodels.tsa.vector_ar.var_model.VARResults.cov_params static VARResults.cov_params() [source] Estimated variance-covariance of model coefficients Notes Covariance of vec(B), where B is the matrix [intercept, A_1, ..., A_p] (K x (Kp + 1)) Adjusted to be an unbiased estimator Ref: Lutkepohl p.74-75

static LogitResults.resid_dev()

statsmodels.discrete.discrete_model.LogitResults.resid_dev static LogitResults.resid_dev() Deviance residuals Notes Deviance residuals are defined where and is the total number of observations sharing the covariate pattern . For now is always set to 1.

NormExpan_gen.sf()

statsmodels.sandbox.distributions.extras.NormExpan_gen.sf NormExpan_gen.sf(x, *args, **kwds) Survival function (1-cdf) at x of the given RV. Parameters: x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: sf : array_like Survival function evaluated

PoissonOffsetGMLE.nloglikeobs()

statsmodels.miscmodels.count.PoissonOffsetGMLE.nloglikeobs PoissonOffsetGMLE.nloglikeobs(params) [source] Loglikelihood of Poisson model Parameters: params : array-like The parameters of the model. Returns: The log likelihood of the model evaluated at `params` : Notes

tsa.arima_process.ArmaProcess()

statsmodels.tsa.arima_process.ArmaProcess class statsmodels.tsa.arima_process.ArmaProcess(ar, ma, nobs=100) [source] Represent an ARMA process for given lag-polynomials This is a class to bring together properties of the process. It does not do any estimation or statistical analysis. Parameters: ar : array_like, 1d Coefficient for autoregressive lag polynomial, including zero lag. See the notes for some information about the sign. ma : array_like, 1d Coefficient for moving-average lag po

SkewNorm2_gen.fit()

statsmodels.sandbox.distributions.extras.SkewNorm2_gen.fit SkewNorm2_gen.fit(data, *args, **kwds) Return MLEs for shape, location, and scale parameters from data. MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, self._fitstart(data) is called to generate such. One can hold some parameters fixed to specific values by passing in keyword arguments f0, f1, ..., fn (for shape parameters

Statistics stats

Statistics stats This section collects various statistical tests and tools. Some can be used independently of any models, some are intended as extension to the models and model results. API Warning: The functions and objects in this category are spread out in various modules and might still be moved around. We expect that in future the statistical tests will return class instances with more informative reporting instead of only the raw numbers. Residual Diagnostics and Specification Tests dur

Binomial.fitted()

statsmodels.genmod.families.family.Binomial.fitted Binomial.fitted(lin_pred) Fitted values based on linear predictors lin_pred. Parameters: lin_pred : array Values of the linear predictor of the model. dot(X,beta) in a classical linear model. Returns: mu : array The mean response variables given by the inverse of the link function.