LinearIVGMM.score_cu()

statsmodels.sandbox.regression.gmm.LinearIVGMM.score_cu LinearIVGMM.score_cu(params, epsilon=None, centered=True)

static VARResults.resid()

statsmodels.tsa.vector_ar.var_model.VARResults.resid static VARResults.resid() [source] Residuals of response variable resulting from estimated coefficients

IVGMM.score_cu()

statsmodels.sandbox.regression.gmm.IVGMM.score_cu IVGMM.score_cu(params, epsilon=None, centered=True)

LogTransf_gen.fit()

statsmodels.sandbox.distributions.transformed.LogTransf_gen.fit LogTransf_gen.fit(data, *args, **kwds) Return MLEs for shape, location, and scale parameters from data. MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, self._fitstart(data) is called to generate such. One can hold some parameters fixed to specific values by passing in keyword arguments f0, f1, ..., fn (for shape param

PoissonZiGMLE.loglike()

statsmodels.miscmodels.count.PoissonZiGMLE.loglike PoissonZiGMLE.loglike(params)

PoissonGMLE.jac()

statsmodels.miscmodels.count.PoissonGMLE.jac PoissonGMLE.jac(*args, **kwds) jac is deprecated, use score_obs instead! Use score_obs method. jac will be removed in 0.7. Jacobian/Gradient of log-likelihood evaluated at params for each observation.

GMM.calc_weightmatrix()

statsmodels.sandbox.regression.gmm.GMM.calc_weightmatrix GMM.calc_weightmatrix(moms, weights_method='cov', wargs=(), params=None) [source] calculate omega or the weighting matrix Parameters: moms : array, (nobs, nmoms) moment conditions for all observations evaluated at a parameter value weights_method : string ?cov? If method=?cov? is cov then the matrix is calculated as simple covariance of the moment conditions. see fit method for available aoptions for the weight and covariance matri

SimpleTable.as_html()

statsmodels.iolib.table.SimpleTable.as_html SimpleTable.as_html(**fmt_dict) [source] Return string. This is the default formatter for HTML tables. An HTML table formatter must accept as arguments a table and a format dictionary.

LogTransf_gen.nnlf()

statsmodels.sandbox.distributions.transformed.LogTransf_gen.nnlf LogTransf_gen.nnlf(theta, x) Return negative loglikelihood function Notes This is -sum(log pdf(x, theta), axis=0) where theta are the parameters (including loc and scale).

static CountResults.resid()

statsmodels.discrete.discrete_model.CountResults.resid static CountResults.resid() [source] Residuals Notes The residuals for Count models are defined as where . Any exposure and offset variables are also handled.