std::num_get::num_get

Defined in header <locale> explicit num_get( std::size_t refs = 0 ); Creates a std::num_get facet and forwards the starting reference count refs to the base class constructor, locale::facet::facet(). Parameters refs - starting reference count

std::num_put::num_put

Defined in header <locale> explicit num_put( std::size_t refs = 0 ); Creates a std::num_put facet and forwards the starting reference count refs to the base class constructor, locale::facet::facet(). Parameters refs - starting reference count

std::numpunct_byname

Defined in header <locale> template< class CharT > class numpunct_byname : public std::numpunct<CharT>; std::numpunct_byname is a std::numpunct facet which encapsulates numeric punctuation preferences of a locale specified at its construction. Two specializations are provided by the standard library. Defined in header <locale> std::numpunct_byname<char> locale-specific std::numpunct facet for narrow character I/O std::numpunct_byname<wchar

std::num_get

Defined in header <locale> template< class CharT, class InputIt = std::istreambuf_iterator<CharT> > class num_get; Class std::num_get encapsulates the rules for parsing string representations of numeric values. Specifically, types bool, unsigned short, unsigned int, long, unsigned long, long long, unsigned long long, float, double, long double, and void* are supported. The standard formatting input operators (such as cin >> n;) use the std::num_ge

std::numpunct::thousands_sep

Defined in header <locale> public: char_type thousands_sep() const; (1) protected: virtual char_type do_thousands_sep() const; (2) 1) Public member function, calls the member function do_thousands_sep of the most derived class. 2) Returns the character to be used as the separator between digit groups when parsing or formatting integers and integral parts of floating-point values. Return value The object of type char_type to use as the thousands separator. The st

std::numpunct::truename

Defined in header <locale> public: string_type truename() const; (1) public: string_type falsename() const; (2) protected: virtual string_type do_truename() const; (3) protected: virtual string_type do_falsename() const; (4) 1-2) Public member function, calls the member function do_truename and do_falsename of the most derived class respectively. 3-4) Returns the string to be used as the representation of the boolean value true. Return value 1-2) The

std::numpunct::grouping

Defined in header <locale> public: std::string grouping() const; (1) protected: virtual std::string do_grouping() const; (2) 1) Public member function, calls the member function do_grouping of the most derived class. 2) Returns an std::string holding, in each char element, the number of digits in each group of the numeric output formatted by num_put::put() (and, therefore, basic_ostream::operator<<) The groups are stored as binary values: three-digit group is

std::numpunct::decimal_point

Defined in header <locale> public: char_type decimal_point() const; (1) protected: virtual char_type do_decimal_point() const; (2) 1) Public member function, calls the member function do_decimal_point of the most derived class. 2) Returns the character to be used as the decimal separator between integer and fractional parts. Return value The object of type char_type to use as the thousands separator. The standard specializations of std::numpunct return '.' and L

std::numpunct::numpunct

Defined in header <locale> explicit numpunct( std::size_t refs = 0 ); Creates a std::numpunct facet and forwards the starting reference count refs to the base class constructor, locale::facet::facet(). Parameters refs - starting reference count

std::numeric_limits::signaling_NaN

static T signaling_NaN(); (until C++11) static constexpr T signaling_NaN(); (since C++11) Returns the special value "signaling not-a-number", as represented by the floating-point type T. Only meaningful if std::numeric_limits<T>::has_signaling_NaN == true. In IEEE 754, the most common binary representation of floating-point numbers, any value with all bits of the exponent set and at least one bit of the fraction set represents a NaN. It is implementation-defined which values