ndarray.var()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False) Returns the variance of the array elements, along given

2025-01-10 15:47:30
numpy.c_
  • References/Python/NumPy/Routines/Indexing routines

numpy.c_ = Translates slice objects to concatenation along the second axis. This is short-hand for np.r_['-1,2,0', index

2025-01-10 15:47:30
masked_array.mask
  • References/Python/NumPy/Routines/Masked array operations

masked_array.mask Mask

2025-01-10 15:47:30
numpy.ma.set_fill_value()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.set_fill_value(a, fill_value)

2025-01-10 15:47:30
ndarray.dot()
  • References/Python/NumPy/Array objects/The N-dimensional array

ndarray.dot(b, out=None) Dot product of two arrays. Refer to

2025-01-10 15:47:30
generic.min()
  • References/Python/NumPy/Array objects/Scalars/numpy.generic

generic.min() Not implemented (virtual attribute) Class generic exists solely to derive numpy scalars from, and possesses

2025-01-10 15:47:30
recarray.sum()
  • References/Python/NumPy/Array objects/Standard array subclasses/numpy.recarray

recarray.sum(axis=None, dtype=None, out=None, keepdims=False) Return the sum of the array elements over the given axis.

2025-01-10 15:47:30
numpy.matlib.eye()
  • References/Python/NumPy/Routines/Matrix library

numpy.matlib.eye(n, M=None, k=0, dtype=)

2025-01-10 15:47:30
numpy.ma.mask_cols()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.mask_cols(a, axis=None)

2025-01-10 15:47:30
chararray.upper()
  • References/Python/NumPy/Routines/String operations/numpy.core.defchararray.chararray

chararray.upper()

2025-01-10 15:47:30