-
numpy.full_like(a, fill_value, dtype=None, order='K', subok=True)
[source] -
Return a full array with the same shape and type as a given array.
Parameters: a : array_like
The shape and data-type of
a
define these same attributes of the returned array.fill_value : scalar
Fill value.
dtype : data-type, optional
Overrides the data type of the result.
order : {?C?, ?F?, ?A?, or ?K?}, optional
Overrides the memory layout of the result. ?C? means C-order, ?F? means F-order, ?A? means ?F? if
a
is Fortran contiguous, ?C? otherwise. ?K? means match the layout ofa
as closely as possible.subok : bool, optional.
If True, then the newly created array will use the sub-class type of ?a?, otherwise it will be a base-class array. Defaults to True.
Returns: out : ndarray
Array of
fill_value
with the same shape and type asa
.See also
-
zeros_like
- Return an array of zeros with shape and type of input.
-
ones_like
- Return an array of ones with shape and type of input.
-
empty_like
- Return an empty array with shape and type of input.
-
zeros
- Return a new array setting values to zero.
-
ones
- Return a new array setting values to one.
-
empty
- Return a new uninitialized array.
-
full
- Fill a new array.
Examples
123456789>>> x
=
np.arange(
6
, dtype
=
np.
int
)
>>> np.full_like(x,
1
)
array([
1
,
1
,
1
,
1
,
1
,
1
])
>>> np.full_like(x,
0.1
)
array([
0
,
0
,
0
,
0
,
0
,
0
])
>>> np.full_like(x,
0.1
, dtype
=
np.double)
array([
0.1
,
0.1
,
0.1
,
0.1
,
0.1
,
0.1
])
>>> np.full_like(x, np.nan, dtype
=
np.double)
array([ nan, nan, nan, nan, nan, nan])
123>>> y
=
np.arange(
6
, dtype
=
np.double)
>>> np.full_like(y,
0.1
)
array([
0.1
,
0.1
,
0.1
,
0.1
,
0.1
,
0.1
])
-
numpy.full_like()

2025-01-10 15:47:30
Please login to continue.