numpy.load()
  • References/Python/NumPy/Routines/Input and output

numpy.load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII')

2025-01-10 15:47:30
numpy.arccosh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.arccosh(x[, out]) = Inverse hyperbolic cosine, element-wise.

2025-01-10 15:47:30
HermiteE.roots()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

HermiteE.roots()

2025-01-10 15:47:30
HermiteE.copy()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

HermiteE.copy()

2025-01-10 15:47:30
RandomState.logistic()
  • References/Python/NumPy/Routines/Random sampling

RandomState.logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples

2025-01-10 15:47:30
MaskedArray.copy()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.copy(order='C')

2025-01-10 15:47:30
numpy.promote_types()
  • References/Python/NumPy/Routines/Data type routines

numpy.promote_types(type1, type2) Returns the data type with the smallest size and smallest scalar kind to which both type1

2025-01-10 15:47:30
numpy.multiply()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.multiply(x1, x2[, out]) = Multiply arguments element-wise.

2025-01-10 15:47:30
numpy.polyval()
  • References/Python/NumPy/Routines/Polynomials/Poly1d

numpy.polyval(p, x)

2025-01-10 15:47:30
numpy.polynomial.hermite.hermvander()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Hermite Module, “Physicists’”

numpy.polynomial.hermite.hermvander(x, deg)

2025-01-10 15:47:30