RandomState.logistic()
  • References/Python/NumPy/Routines/Random sampling

RandomState.logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples

2025-01-10 15:47:30
numpy.polyfit()
  • References/Python/NumPy/Routines/Polynomials/Poly1d

numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)

2025-01-10 15:47:30
numpy.trim_zeros()
  • References/Python/NumPy/Routines/Array manipulation routines

numpy.trim_zeros(filt, trim='fb')

2025-01-10 15:47:30
Laguerre.copy()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

Laguerre.copy()

2025-01-10 15:47:30
RandomState.standard_gamma()
  • References/Python/NumPy/Routines/Random sampling

RandomState.standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples

2025-01-10 15:47:30
Legendre.copy()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

Legendre.copy()

2025-01-10 15:47:30
numpy.log10()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.log10(x[, out]) = Return the base 10 logarithm of the input array, element-wise.

2025-01-10 15:47:30
numpy.array_repr()
  • References/Python/NumPy/Routines/Input and output

numpy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)

2025-01-10 15:47:30
numpy.promote_types()
  • References/Python/NumPy/Routines/Data type routines

numpy.promote_types(type1, type2) Returns the data type with the smallest size and smallest scalar kind to which both type1

2025-01-10 15:47:30
numpy.random.beta()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case

2025-01-10 15:47:30