numpy.putmask()
  • References/Python/NumPy/Routines/Indexing routines

numpy.putmask(a, mask, values) Changes elements of an array based on conditional and input values. Sets a.flat[n]

2025-01-10 15:47:30
numpy.roll()
  • References/Python/NumPy/Routines/Array manipulation routines

numpy.roll(a, shift, axis=None)

2025-01-10 15:47:30
ndarray.flatten()
  • References/Python/NumPy/Routines/Array manipulation routines

ndarray.flatten(order='C') Return a copy of the array collapsed into one dimension.

2025-01-10 15:47:30
numpy.polynomial.legendre.legtrim()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

numpy.polynomial.legendre.legtrim(c, tol=0)

2025-01-10 15:47:30
numpy.fft.fftfreq()
  • References/Python/NumPy/Routines/Discrete Fourier Transform

numpy.fft.fftfreq(n, d=1.0)

2025-01-10 15:47:30
flatiter.next
  • References/Python/NumPy/Routines/Indexing routines/numpy.flatiter

flatiter.next x.next() -> the next value, or raise StopIteration

2025-01-10 15:47:30
DataSource.open()
  • References/Python/NumPy/Routines/Input and output/numpy.DataSource

DataSource.open(path, mode='r')

2025-01-10 15:47:30
HermiteE.
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

HermiteE.__call__(arg)

2025-01-10 15:47:30
numpy.random.standard_gamma()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples are

2025-01-10 15:47:30
numpy.nanmean()
  • References/Python/NumPy/Routines/Statistics

numpy.nanmean(a, axis=None, dtype=None, out=None, keepdims=False)

2025-01-10 15:47:30