sklearn.cluster.affinity_propagation()

sklearn.cluster.affinity_propagation(S, preference=None, convergence_iter=15, max_iter=200, damping=0.5, copy=True, verbose=False

2017-01-15 04:25:31
sklearn.cluster.k_means()

sklearn.cluster.k_means(X, n_clusters, init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=0.0001

2017-01-15 04:25:32
cluster.MeanShift()

class sklearn.cluster.MeanShift(bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, n_jobs=1)

2017-01-15 04:20:43
sklearn.cluster.ward_tree()

sklearn.cluster.ward_tree(X, connectivity=None, n_clusters=None, return_distance=False)

2017-01-15 04:25:33
cluster.AgglomerativeClustering()

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, affinity='euclidean', memory=Memory(cachedir=None), connectivity=None

2017-01-15 04:20:38
cluster.bicluster.SpectralCoclustering()

class sklearn.cluster.bicluster.SpectralCoclustering(n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False

2017-01-15 04:20:39
cluster.Birch()

class sklearn.cluster.Birch(threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True)

2017-01-15 04:20:40
cluster.SpectralClustering()

class sklearn.cluster.SpectralClustering(n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1.0, affinity='rbf'

2017-01-15 04:20:45
cluster.AffinityPropagation()

class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affinity='euclidean'

2017-01-15 04:20:37
cluster.MiniBatchKMeans()

class sklearn.cluster.MiniBatchKMeans(n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True

2017-01-15 04:20:44