sklearn.datasets.get_data_home(data_home=None)
sklearn.datasets.make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2
sklearn.datasets.make_swiss_roll(n_samples=100, noise=0.0, random_state=None)
sklearn.datasets.fetch_california_housing(data_home=None, download_if_missing=True)
sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50
sklearn.datasets.make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None)
sklearn.datasets.load_svmlight_file(f, n_features=None, dtype=, multilabel=False, zero_based='auto', query_id=False)
sklearn.datasets.fetch_rcv1(data_home=None, subset='all', download_if_missing=True, random_state=None, shuffle=False)
sklearn.datasets.fetch_20newsgroups_vectorized(subset='train', remove=(), data_home=None)
sklearn.datasets.dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False)
Page 2 of 5