sklearn.datasets.make_swiss_roll()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_swiss_roll(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.get_data_home()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.get_data_home(data_home=None)

2025-01-10 15:47:30
sklearn.datasets.load_digits()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_digits(n_class=10, return_X_y=False)

2025-01-10 15:47:30
sklearn.datasets.make_multilabel_classification()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50

2025-01-10 15:47:30
sklearn.datasets.make_spd_matrix()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_spd_matrix(n_dim, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.make_s_curve()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.make_friedman3()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_friedman3(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.load_linnerud()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_linnerud(return_X_y=False)

2025-01-10 15:47:30
sklearn.datasets.load_svmlight_file()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_svmlight_file(f, n_features=None, dtype=, multilabel=False, zero_based='auto', query_id=False)

2025-01-10 15:47:30
sklearn.datasets.fetch_20newsgroups_vectorized()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_20newsgroups_vectorized(subset='train', remove=(), data_home=None)

2025-01-10 15:47:30