sklearn.datasets.make_sparse_uncorrelated()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.make_sparse_spd_matrix()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=0.1, largest_coef=0.9, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.make_circles()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=0.8)

2025-01-10 15:47:30
sklearn.datasets.load_sample_images()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_sample_images()

2025-01-10 15:47:30
sklearn.datasets.make_moons()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.fetch_20newsgroups()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=()

2025-01-10 15:47:30
sklearn.datasets.load_svmlight_files()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_svmlight_files(files, n_features=None, dtype=, multilabel=False, zero_based='auto', query_id=False)

2025-01-10 15:47:30
sklearn.datasets.load_boston()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_boston(return_X_y=False)

2025-01-10 15:47:30
sklearn.datasets.load_iris()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_iris(return_X_y=False)

2025-01-10 15:47:30