sklearn.datasets.load_iris()

sklearn.datasets.load_iris(return_X_y=False) [source]

Load and return the iris dataset (classification).

The iris dataset is a classic and very easy multi-class classification dataset.

Classes 3
Samples per class 50
Samples total 150
Dimensionality 4
Features real, positive

Read more in the User Guide.

Parameters:

return_X_y : boolean, default=False.

If True, returns (data, target) instead of a Bunch object. See below for more information about the data and target object.

New in version 0.18.

Returns:

data : Bunch

Dictionary-like object, the interesting attributes are: ?data?, the data to learn, ?target?, the classification labels, ?target_names?, the meaning of the labels, ?feature_names?, the meaning of the features, and ?DESCR?, the full description of the dataset.

(data, target) : tuple if return_X_y is True

New in version 0.18.

Examples

Let?s say you are interested in the samples 10, 25, and 50, and want to know their class name.

>>> from sklearn.datasets import load_iris
>>> data = load_iris()
>>> data.target[[10, 25, 50]]
array([0, 0, 1])
>>> list(data.target_names)
['setosa', 'versicolor', 'virginica']

Examples using sklearn.datasets.load_iris

doc_scikit_learn
2017-01-15 04:25:47
Comments
Leave a Comment

Please login to continue.