-
sklearn.datasets.load_iris(return_X_y=False)
[source] -
Load and return the iris dataset (classification).
The iris dataset is a classic and very easy multi-class classification dataset.
Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive Read more in the User Guide.
Parameters: return_X_y : boolean, default=False.
If True, returns
(data, target)
instead of a Bunch object. See below for more information about thedata
andtarget
object.New in version 0.18.
Returns: data : Bunch
Dictionary-like object, the interesting attributes are: ?data?, the data to learn, ?target?, the classification labels, ?target_names?, the meaning of the labels, ?feature_names?, the meaning of the features, and ?DESCR?, the full description of the dataset.
(data, target) : tuple if
return_X_y
is TrueNew in version 0.18.
Examples
Let?s say you are interested in the samples 10, 25, and 50, and want to know their class name.
123456>>>
from
sklearn.datasets
import
load_iris
>>> data
=
load_iris()
>>> data.target[[
10
,
25
,
50
]]
array([
0
,
0
,
1
])
>>>
list
(data.target_names)
[
'setosa'
,
'versicolor'
,
'virginica'
]
sklearn.datasets.load_iris()
Examples using

2025-01-10 15:47:30
Please login to continue.