sklearn.metrics.log_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None)

2025-01-10 15:47:30
sklearn.metrics.brier_score_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None)

2025-01-10 15:47:30
sklearn.metrics.silhouette_samples()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.silhouette_samples(X, labels, metric='euclidean', **kwds)

2025-01-10 15:47:30
sklearn.metrics.pairwise_distances_argmin()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise_distances_argmin(X, Y, axis=1, metric='euclidean', batch_size=500, metric_kwargs=None)

2025-01-10 15:47:30
sklearn.metrics.get_scorer()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.get_scorer(scoring)

2025-01-10 15:47:30
sklearn.metrics.consensus_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.consensus_score(a, b, similarity='jaccard')

2025-01-10 15:47:30
sklearn.metrics.pairwise.euclidean_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False, X_norm_squared=None)

2025-01-10 15:47:30
sklearn.metrics.make_scorer()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs)

2025-01-10 15:47:30
sklearn.metrics.pairwise.kernel_metrics()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.kernel_metrics()

2025-01-10 15:47:30
sklearn.metrics.explained_variance_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average')

2025-01-10 15:47:30