sklearn.metrics.fowlkes_mallows_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.fowlkes_mallows_score(labels_true, labels_pred, sparse=False)

2025-01-10 15:47:30
sklearn.metrics.roc_auc_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.roc_auc_score(y_true, y_score, average='macro', sample_weight=None)

2025-01-10 15:47:30
sklearn.metrics.pairwise.chi2_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.chi2_kernel(X, Y=None, gamma=1.0)

2025-01-10 15:47:30
sklearn.metrics.coverage_error()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.coverage_error(y_true, y_score, sample_weight=None)

2025-01-10 15:47:30
sklearn.metrics.v_measure_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.v_measure_score(labels_true, labels_pred)

2025-01-10 15:47:30
sklearn.metrics.confusion_matrix()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)

2025-01-10 15:47:30
sklearn.metrics.pairwise_distances_argmin_min()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise_distances_argmin_min(X, Y, axis=1, metric='euclidean', batch_size=500, metric_kwargs=None)

2025-01-10 15:47:30
sklearn.metrics.zero_one_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None)

2025-01-10 15:47:30
sklearn.metrics.roc_curve()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True)

2025-01-10 15:47:30
sklearn.metrics.recall_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None)

2025-01-10 15:47:30