tf.sparse_transpose(sp_input, perm=None, name=None)
Transposes a SparseTensor
The returned tensor's dimension i will correspond to the input dimension perm[i]. If perm is not given, it is set to (n-1...0), where n is the rank of the input tensor. Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors.
For example, if sp_input has shape [4, 5] and indices / values:
[0, 3]: b [0, 1]: a [3, 1]: d [2, 0]: c
then the output will be a SparseTensor of shape [5, 4] and indices / values:
[0, 2]: c [1, 0]: a [1, 3]: d [3, 0]: b
Args:
-
sp_input: The inputSparseTensor. -
perm: A permutation of the dimensions ofsp_input. -
name: A name prefix for the returned tensors (optional)
Returns:
A transposed SparseTensor.
Raises:
-
TypeError: Ifsp_inputis not aSparseTensor.
Please login to continue.