-
numpy.delete(arr, obj, axis=None)
[source] -
Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries not returned by
arr[obj]
.Parameters: arr : array_like
Input array.
obj : slice, int or array of ints
Indicate which sub-arrays to remove.
axis : int, optional
The axis along which to delete the subarray defined by
obj
. Ifaxis
is None,obj
is applied to the flattened array.Returns: out : ndarray
A copy of
arr
with the elements specified byobj
removed. Note thatdelete
does not occur in-place. Ifaxis
is None,out
is a flattened array.Notes
Often it is preferable to use a boolean mask. For example:
123>>> mask
=
np.ones(
len
(arr), dtype
=
bool
)
>>> mask[[
0
,
2
,
4
]]
=
False
>>> result
=
arr[mask,...]
Is equivalent to
np.delete(arr, [0,2,4], axis=0)
, but allows further use ofmask
.Examples
12345678>>> arr
=
np.array([[
1
,
2
,
3
,
4
], [
5
,
6
,
7
,
8
], [
9
,
10
,
11
,
12
]])
>>> arr
array([[
1
,
2
,
3
,
4
],
[
5
,
6
,
7
,
8
],
[
9
,
10
,
11
,
12
]])
>>> np.delete(arr,
1
,
0
)
array([[
1
,
2
,
3
,
4
],
[
9
,
10
,
11
,
12
]])
123456>>> np.delete(arr, np.s_[::
2
],
1
)
array([[
2
,
4
],
[
6
,
8
],
[
10
,
12
]])
>>> np.delete(arr, [
1
,
3
,
5
],
None
)
array([
1
,
3
,
5
,
7
,
8
,
9
,
10
,
11
,
12
])
numpy.delete()

2025-01-10 15:47:30
Please login to continue.