-
numpy.inner(a, b)
-
Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes.
Parameters: a, b : array_like
If
a
andb
are nonscalar, their last dimensions must match.Returns: out : ndarray
out.shape = a.shape[:-1] + b.shape[:-1]
Raises: ValueError
If the last dimension of
a
andb
has different size.See also
Notes
For vectors (1-D arrays) it computes the ordinary inner-product:
1np.inner(a, b)
=
sum
(a[:]
*
b[:])
More generally, if
ndim(a) = r > 0
andndim(b) = s > 0
:1np.inner(a, b)
=
np.tensordot(a, b, axes
=
(
-
1
,
-
1
))
or explicitly:
12np.inner(a, b)[i0,...,ir
-
1
,j0,...,js
-
1
]
=
sum
(a[i0,...,ir
-
1
,:]
*
b[j0,...,js
-
1
,:])
In addition
a
orb
may be scalars, in which case:1np.inner(a,b)
=
a
*
b
Examples
Ordinary inner product for vectors:
1234>>> a
=
np.array([
1
,
2
,
3
])
>>> b
=
np.array([
0
,
1
,
0
])
>>> np.inner(a, b)
2
A multidimensional example:
12345>>> a
=
np.arange(
24
).reshape((
2
,
3
,
4
))
>>> b
=
np.arange(
4
)
>>> np.inner(a, b)
array([[
14
,
38
,
62
],
[
86
,
110
,
134
]])
An example where
b
is a scalar:123>>> np.inner(np.eye(
2
),
7
)
array([[
7.
,
0.
],
[
0.
,
7.
]])
numpy.inner()

2025-01-10 15:47:30
Please login to continue.