-
numpy.invert(x[, out]) =
-
Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator
~
.For signed integer inputs, the two?s complement is returned. In a two?s-complement system negative numbers are represented by the two?s complement of the absolute value. This is the most common method of representing signed integers on computers [R32]. A N-bit two?s-complement system can represent every integer in the range
to
.
Parameters: x1 : array_like
Only integer and boolean types are handled.
Returns: out : array_like
Result.
See also
bitwise_and
,bitwise_or
,bitwise_xor
,logical_not
-
binary_repr
- Return the binary representation of the input number as a string.
Notes
bitwise_not
is an alias forinvert
:12>>> np.bitwise_not
is
np.invert
True
References
[R32] (1, 2) Wikipedia, ?Two?s complement?, http://en.wikipedia.org/wiki/Two?s_complement Examples
We?ve seen that 13 is represented by
00001101
. The invert or bit-wise NOT of 13 is then:123456>>> np.invert(np.array([
13
], dtype
=
uint8))
array([
242
], dtype
=
uint8)
>>> np.binary_repr(x, width
=
8
)
'00001101'
>>> np.binary_repr(
242
, width
=
8
)
'11110010'
The result depends on the bit-width:
123456>>> np.invert(np.array([
13
], dtype
=
uint16))
array([
65522
], dtype
=
uint16)
>>> np.binary_repr(x, width
=
16
)
'0000000000001101'
>>> np.binary_repr(
65522
, width
=
16
)
'1111111111110010'
When using signed integer types the result is the two?s complement of the result for the unsigned type:
1234>>> np.invert(np.array([
13
], dtype
=
int8))
array([
-
14
], dtype
=
int8)
>>> np.binary_repr(
-
14
, width
=
8
)
'11110010'
Booleans are accepted as well:
12>>> np.invert(array([
True
,
False
]))
array([
False
,
True
], dtype
=
bool
)
-
numpy.invert()

2025-01-10 15:47:30
Please login to continue.