- 
numpy.invert(x[, out]) =
- 
Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ~.For signed integer inputs, the two?s complement is returned. In a two?s-complement system negative numbers are represented by the two?s complement of the absolute value. This is the most common method of representing signed integers on computers [R32]. A N-bit two?s-complement system can represent every integer in the range  to to . .Parameters: x1 : array_like Only integer and boolean types are handled. Returns: out : array_like Result. See also bitwise_and,bitwise_or,bitwise_xor,logical_not- 
 binary_repr
- Return the binary representation of the input number as a string.
 Notesbitwise_notis an alias forinvert:>>> np.bitwise_not is np.invert True References[R32] (1, 2) Wikipedia, ?Two?s complement?, http://en.wikipedia.org/wiki/Two?s_complement ExamplesWe?ve seen that 13 is represented by 00001101. The invert or bit-wise NOT of 13 is then:>>> np.invert(np.array([13], dtype=uint8)) array([242], dtype=uint8) >>> np.binary_repr(x, width=8) '00001101' >>> np.binary_repr(242, width=8) '11110010' The result depends on the bit-width: >>> np.invert(np.array([13], dtype=uint16)) array([65522], dtype=uint16) >>> np.binary_repr(x, width=16) '0000000000001101' >>> np.binary_repr(65522, width=16) '1111111111110010' When using signed integer types the result is the two?s complement of the result for the unsigned type: >>> np.invert(np.array([13], dtype=int8)) array([-14], dtype=int8) >>> np.binary_repr(-14, width=8) '11110010' Booleans are accepted as well: >>> np.invert(array([True, False])) array([False, True], dtype=bool) 
- 
 
numpy.invert()
 
          2025-01-10 15:47:30
            
          
Please login to continue.