-
numpy.searchsorted(a, v, side='left', sorter=None)
[source] -
Find indices where elements should be inserted to maintain order.
Find the indices into a sorted array
a
such that, if the corresponding elements inv
were inserted before the indices, the order ofa
would be preserved.Parameters: a : 1-D array_like
Input array. If
sorter
is None, then it must be sorted in ascending order, otherwisesorter
must be an array of indices that sort it.v : array_like
Values to insert into
a
.side : {?left?, ?right?}, optional
If ?left?, the index of the first suitable location found is given. If ?right?, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of
a
).sorter : 1-D array_like, optional
Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort.
New in version 1.7.0.
Returns: indices : array of ints
Array of insertion points with the same shape as
v
.Notes
Binary search is used to find the required insertion points.
As of Numpy 1.4.0
searchsorted
works with real/complex arrays containingnan
values. The enhanced sort order is documented insort
.Examples
123456>>> np.searchsorted([
1
,
2
,
3
,
4
,
5
],
3
)
2
>>> np.searchsorted([
1
,
2
,
3
,
4
,
5
],
3
, side
=
'right'
)
3
>>> np.searchsorted([
1
,
2
,
3
,
4
,
5
], [
-
10
,
10
,
2
,
3
])
array([
0
,
5
,
1
,
2
])
numpy.searchsorted()

2025-01-10 15:47:30
Please login to continue.