-
RandomState.uniform(low=0.0, high=1.0, size=None)
-
Draw samples from a uniform distribution.
Samples are uniformly distributed over the half-open interval
[low, high)
(includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn byuniform
.Parameters: low : float, optional
Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0.
high : float
Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. Default is None, in which case a single value is returned.Returns: out : ndarray
Drawn samples, with shape
size
.See also
-
randint
- Discrete uniform distribution, yielding integers.
-
random_integers
- Discrete uniform distribution over the closed interval
[low, high]
. -
random_sample
- Floats uniformly distributed over
[0, 1)
. -
random
- Alias for
random_sample
. -
rand
- Convenience function that accepts dimensions as input, e.g.,
rand(2,2)
would generate a 2-by-2 array of floats, uniformly distributed over[0, 1)
.
Notes
The probability density function of the uniform distribution is
anywhere within the interval
[a, b)
, and zero elsewhere.Examples
Draw samples from the distribution:
>>> s = np.random.uniform(-1,0,1000)
All values are within the given interval:
>>> np.all(s >= -1) True >>> np.all(s < 0) True
Display the histogram of the samples, along with the probability density function:
>>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, normed=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show()
(Source code, png, pdf)
-
RandomState.uniform()
2017-01-10 18:19:50
Please login to continue.