blob_doh
-
skimage.feature.blob_doh(image, min_sigma=1, max_sigma=30, num_sigma=10, threshold=0.01, overlap=0.5, log_scale=False)
[source] -
Finds blobs in the given grayscale image.
Blobs are found using the Determinant of Hessian method [R127]. For each blob found, the method returns its coordinates and the standard deviation of the Gaussian Kernel used for the Hessian matrix whose determinant detected the blob. Determinant of Hessians is approximated using [R128].
Parameters: image : ndarray
Input grayscale image.Blobs can either be light on dark or vice versa.
min_sigma : float, optional
The minimum standard deviation for Gaussian Kernel used to compute Hessian matrix. Keep this low to detect smaller blobs.
max_sigma : float, optional
The maximum standard deviation for Gaussian Kernel used to compute Hessian matrix. Keep this high to detect larger blobs.
num_sigma : int, optional
The number of intermediate values of standard deviations to consider between
min_sigma
andmax_sigma
.threshold : float, optional.
The absolute lower bound for scale space maxima. Local maxima smaller than thresh are ignored. Reduce this to detect less prominent blobs.
overlap : float, optional
A value between 0 and 1. If the area of two blobs overlaps by a fraction greater than
threshold
, the smaller blob is eliminated.log_scale : bool, optional
If set intermediate values of standard deviations are interpolated using a logarithmic scale to the base
10
. If not, linear interpolation is used.Returns: A : (n, 3) ndarray
A 2d array with each row representing 3 values,
(y,x,sigma)
where(y,x)
are coordinates of the blob andsigma
is the standard deviation of the Gaussian kernel of the Hessian Matrix whose determinant detected the blob.Notes
The radius of each blob is approximately
sigma
. Computation of Determinant of Hessians is independent of the standard deviation. Therefore detecting larger blobs won’t take more time. In methods lineblob_dog()
andblob_log()
the computation of Gaussians for largersigma
takes more time. The downside is that this method can’t be used for detecting blobs of radius less than3px
due to the box filters used in the approximation of Hessian Determinant.References
[R127] (1, 2) http://en.wikipedia.org/wiki/Blob_detection#The_determinant_of_the_Hessian [R128] (1, 2) Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, “SURF: Speeded Up Robust Features” ftp://ftp.vision.ee.ethz.ch/publications/articles/eth_biwi_00517.pdf Examples
>>> from skimage import data, feature >>> img = data.coins() >>> feature.blob_doh(img) array([[ 121. , 271. , 30. ], [ 123. , 44. , 23.55555556], [ 123. , 205. , 20.33333333], [ 124. , 336. , 20.33333333], [ 126. , 101. , 20.33333333], [ 126. , 153. , 20.33333333], [ 156. , 302. , 30. ], [ 185. , 348. , 30. ], [ 192. , 212. , 23.55555556], [ 193. , 275. , 23.55555556], [ 195. , 100. , 23.55555556], [ 197. , 44. , 20.33333333], [ 197. , 153. , 20.33333333], [ 260. , 173. , 30. ], [ 262. , 243. , 23.55555556], [ 265. , 113. , 23.55555556], [ 270. , 363. , 30. ]])
Please login to continue.